

Heat Treatment of Empty Metal Storage Bins

Dennis R. Tilley, Mark E. Casada, & Frank H. Arthur USDA-ARS

Grain Marketing and Production Research Center Manhattan, KS

Outline

- * Project Overview
- * Objective
- * Equipment and Process Used
- * Temperatures and Insect Mortality Results
- * Conclusions
- * Future Plans

Introduction

- * Residual chemicals currently recommended for pre-binning sanitation
- * Heat treatments have been successfully applied in processing facilities to control insects (alternative to Methyl Bromide)
- * Bins with full drying floor particularly difficult for sanitation
- * GMPRC Pilot Plant had a bin needing sanitation

Project Overview

- *4,000 bu metal drying bin (perforated floor).
- *Large variable speed drying fan.
- *1 h.p. aeration fan for circulation in the bin.
- *Perforated floor was covered with tarp.
- *Introduced live insects to check mortality.

Trap Counts

Larvae Exiting Bin

Project Objectives

- * Develop a practical method to obtain a uniform heat distribution of 120°F within the bin.
- * Evaluate insect mortality rates.
- * Develop an economic model describing the most cost effective method of using heat to sanitize steel grain bins prior to filling.

Heating Equipment

18 kW or 61,400 BTU

Forced Air Propane Heaters

65,000 - 85,000 - 100,000 BTU

Three species added to arenas'

Rice weevil (Sitophilus oryzae)

Red flour beetle (*Tribolium castaneum*)

Lesser grain borer (Rhyzopertha dominica)

Arena

* 3 species of insects.

* HOBO Temperature Instrument.

* 1 tsp of cracked wheat

Arena Locations

- * 5 Control located outside of bin..
- * 5 Below aeration
- * 5 Above Aeration floor
- * 7 One foot above
- * 3 Upper Portions of bin

Temperature and Time Required to Kill

^{*} Evans, D. E. 1981. The influence of some biological and physical factors on the heat tolerance relationships for R. dominica and S. oryzae. J. Stored Prod. Res. 17:656-72.

18 kW Heating Element

Summary of Kill Results:

Heating Equipment

Duct Heater

18 kW or 61,400 BTU

Forced Air Propane Heaters

65,000 - 85,000 - 100,000 BTU

Propane Heat Treatment

- 4,000 bu bin
- Perforated floor is covered with a tarp.
- Interior circulation system removed
- Fuel consumption:

	<u>65K</u>	<u> 100K</u>
gallons/hr	0.7	1.1
pounds/hr	3.0	4.6

Conclusion

- * Disinfesting a steel grain bin using heat is a viable option.
- * Distributing heat uniformly to all parts of the concrete floor is a key for successful treatment.

Future Plans

- * Repeat treatments with propane heater at 65,000 BTU
- * Spot electric heater using recirculated air.
- * Controlled time motion study of sanitizing a bin by removing flooring and manually cleaning.
- * Development of economic model to optimize the most efficient and practical application.

Questions

