

AERATION and COOLING of Stored Grain

Mark Casada, Ph.D., P.E. Agricultural Engineer

USDA – ARS
Grain Marketing & Production
Research Center
Manhattan, Kansas

Professional Experience

AERATION and COOLING of Stored Grain

- Introduction... Grain Storage Basics
 - > Grain Moisture: affect on storage
- Grain Temperature & Cooling
- Grain Aeration Systems

Grain Storage

The Good News:

Cool, dry, clean grain stores very well: we expect <u>no quality loss</u>.

Aeration is the tool to keep grain cool:

Always below 60°F, below 50°F when weather allows.

Grain Storage

The Bad News (grain storage threats):

- Insects
- Fungi (molds)
- Sprouting
- Loss of Germination
- Handling Damage
- Rodents and Birds
- Other (Spoutlines, Moisture Migration, ...)

Grain Storage

The Bad News (grain storage threats):

- Insects
- Fungi (molds)
- → Sprouting
- → Loss of Germination
- Handling Damage
- → Rodents and Birds
- → Other (Spoutlines, Moisture Migration, ...)

Stored Grain Factors

- ◆ Temperature
- Grain Moisture Content
- → Initial Grain Quality Clean
 - soundness
 - degree of contamination (fungi, insects, ...)
 - amount of foreign material
- Time in Storage
- Other (Oxygen Supply, pH, ...)

Stored Grain Factors

- ◆ Temperature
- Grain Moisture Content
- → Initial Grain Quality
 - soundness
 - degree of contamination (fungi, insects, ...)
 - amount of foreign material
- → Time in Storage
- Other (Oxygen Supply, pH, ...)

Dealing with the Threats

The Top Two Threats

→ Insects control w/ temperature

Fungi (molds) control w/ moisture

GRAIN MOISTURE

Dry vs. Wet Grain

- For this lecture:
 - Emphasis on dry grain (or over-dry).
 - Moisture problems usually very limited.
 - Insects usually the bigger issue (temperature).
 - Low moisture content may slow or stop some primary infesting insects.

Grain Moisture Equilibrium

Grain Moisture & Mold Control

Moisture Content
 the key to mold
 control

Corn at 68°F		
M.C.	ERH	
16 %	79 % -	
15 %	73 % —	
14 %	66 % -	

Safe Storage Moisture Content

Grain Stored One Year	South	Central	North
Corn/Milo	13	14	14
Soybeans	12	12	13
Wheat/Barley	11	12	13
Sunflower	9	9	9

Average Moisture Content –

Very little grain is at the "average" moisture content

Must deal with the *highest* moisture content in the bin

Moisture migration causes additional moisture variation

Aerate to eliminate temperature differences

Watch for "simple problems"

A leak is a leak...

Watch for "simple problems"

Spouting can channel leaking water...

GRAIN TEMPERATURE

Temperature & Insects

Temperature

is the key to

insect control

Temperature & Insects

40

<0

°F

Optimum for population growth

- Helpful to slow population growth
- Generally stops population growth
- Leads to eventual death of storage insects
- ⇒ Winter storage (stops moisture migration)
- ⇒ Only way to achieve quick kill...

Insect Control in Stored Grain

Meet **SAM**:

Sanitation

Aeration

Monitoring

Insect Control in Stored Grain

Sanitation

- eliminate sources of infestation

Aeration

- cool immediately to slow development

Monitoring

temperature & insect numbers

Controlled Aeration

Using thermostatic controllers to automate the aeration cycles

Objective: keep grain within 10 – 15°F of average ambient temperature

Summer: Cool grain immediately below 75°F

Fall: Cool below 60°F as soon as weather permits

Late Fall: Cool to 40°F for winter storage

Controlled Aeration

- Simple aeration controllers are:
 - cheap (pay off ≤ one year)
 - easy to use (thermostat + hour meter)
 - effective and efficient
 - and should be on every grain bin.

Controlled Aeration

Using thermostatic controllers to automate the aeration cycles

Grain Storage Cycle

- Cool grain immediately below 75°F
- Cool to 60°F as soon as feasible (weather)
- Maintain the grain
 - monitor temperatures: aerate as needed
 - monitor insects: aerate/fumigate as required
- Cool to 40°F for winter storage
- Maintain the grain seal fan opening

Grain Storage Cycle

- Cool grain immediately below 75°F
- Cool to 60°F as soon as feasible (weather)
- Maintain the grain
 - monitor temperatures: aerate as needed
 - monitor insects: aerate/fumigate as required
- Cool to 40°F for winter storage
- Maintain the grain seal fan opening

Year-Round Grain Storage

Receive Grain All Year

- Insect infested grain mixed with clean grain
- Insects move through the system with grain
- Insect numbers often higher than on-farm
- Segregate by infestation level and treat

Year-Round Grain Storage

Storage Fundamentals

- Sanitation in and around grain bins
- Cooling grain (controlled aeration)
 - lower airflows (cfm/b) imply the t for cost
 - pressure system ad a pre-heat with deep bins
- Monitoring grain

Grain Storage Safety

- Know & avoid equipment hazards
 - Practice lockout / tagout
- Always know the bin history
 - Beware: flowing grain (stay out!)
 - ◆ Beware: bridged grain (stay off of it)
 - Beware: steep piles (stay away from it)
 - Beware: dust/mold spores (wear mask)
 - Beware: CO₂ buildup (ventilate)
- Stop grain dust fires & explosions
 - Beware: grain dust & sparks (eliminate!)

Don't be that Guy!

Grain Storage Safety

Hazards: Grain Dust is the Big One

- Grain dust is an airborne pollutant
 - Long-term effects under investigation
 - Nuisance in surrounding residential areas
- Grain dust is a fire and explosion hazard
 - Powerful and deadly explosions
 - Requires three ingredients

Grain Storage Safety

Stopping Grain Dust Fires/Explosions

- Grain dust suspended in air
 - Design and manage to eliminate dust
- Sparks initiate a flame (at 400°F)
 - Design and maintain to avoid sparks/hotspots
- Confined area permits high pressure/explosion
 - Design to eliminate confined areas

Grain Aeration Systems

Grain Aeration Systems

Economics of Insect Treatments

ver cost

Fumigation w/ turning

Fumigation

- Turning

Aeration

Grain Aeration Systems

Recommended Airflow Rates for Dry Grain (Foster & Tuite, 1982):

Storage Temperate Storpic Type Chiese rates for ic Horizon Double these ration 0.05 Horizon 0.05 Horizon

^{*}Higher rates increase control, flexibility, and cost.

```
High humidity increases
Seoling times (evaporative heat)
Approximate
  FCooling times a little longer
  Vinterwith controlled aeration
         270 hr
                  135 hr
                            54 hr
 Spring
```

Fan horsepower per 1000 bu of wheat:

	Airflow rate (cfm/bu)		
Depth, ft	0.05	0.10	0.25
100	0.20 hp	0.79 hp	6.1 hp
50	0.057	0.19	1.3
20	0.020	0.050	0.20

Pressure vs. Suction Aeration

Suction (downflow)

Pressure (upflow)

Airflow Options:

- Pressure (push) System
- Suction (pull) System
- Push-Pull System
- Crossflow AerationSystem

Tall Silos

Pressure System Advantages

- Required if warm grain placed on top of cool grain
- Last grain to cool is at top: easily monitored
- Natural convection aids aeration in deep bins
- Fan energy compensates for too cool or moist air
- More uniform airflow in flat storages (long ducts)
- No solar heat pulled in from top to over dry grain
- Won't cause roof collapse if vents freeze

Suction System Advantages

- Excess moisture is easily detected at top
- Allows you to smell the exhaust at ground level
- ◆ Condensation ≈ below the grain; limited in duct
- High inlet brings in less dirt and debris
- Eliminates potential to suck in winter snow
- Can aerate spots in flat storages using plastic

Arrangements:

Best "duct" arrangement:

Close to full drying floor effectiveness

Less expensive than drying floor

Aeration Fan Selection

. . .

Grain Storage Summary

- Moisture Content to Control Molds ERH < 65 % for long term storage Use the highest moisture in the bin
- Temperature to Control Insects
 T ≤ 40°F in winter (always < 60°F)
 Watch the highest temperature in the bin
- Safety Practices to Control Hazards

Grain Storage Summary

Remember SAM:

Sanitation

- eliminate sources of infestation

Aeration

cool immediately to slow development

Monitoring

- temperature & insect numbers

Grain Storage on the Web http://www.gmprc.ksu.edu/

- POST HARVEST GRAIN QUALITY & STORED PRODUCT PROTECTION PROGRAM
 - http://pasture.ecn.purdue.edu/~grainlab/
- THE WHEAT PAGE

 Kansas State University
 - http://www.oznet.ksu.edu/wheatpage/
- Post-Harvest Handling of Crops
 - http://www.bae.umn.edu/extens/postharvest/
- Stored Grain Advisor
 - http://bru.gmprc.ksu.edu/proj/sga/

- Three criteria:
 - Duct spacing not "excessive"
 - ♦ less than ½ grain depth to duct anywhere on floor
 - Air velocity < 2500 fpm for pressure system< 1500 fpm for suction
 - Perforated surface area = 1 ft² per 25 cfm

- Miscellaneous:
 - Use well-designed fan-to-duct transition
 - Perforated ducts: minimum 10% open
 - Roof vents: 1 ft²/hp (pressure)
 - In-floor ducts don't interfere with unloading
 - Effective area = 75% for round ducts on floor

Aeration Fan Selection

- 1. Select lowest airflow (cfm/bu) for cooling rate
- 2. Airflow: cfm/ft² = $(0.8) \times (depth) \times (cfm/bu)$
- 3. Pressure drop: $\triangle P = (inH_2O/ft) \times (depth) + 0.4$
- 4. Total airflow: cfm = (cfm/bu) x (total bushels) or: cfm = (cfm/ ft 2) x (floor area)
- 5. Select fan to deliver flow & pressure (fan data)

Double the Recommended Airflows for Controlled Aeration Systems

	Recommended rate*, cfm/bu	
Storage Type	Temperate Climate	Subtropic Climate
Horizontal	$0.10 \rightarrow 0.20$	$0.20 \rightarrow 0.40$
Vertical	$0.05 \rightarrow 0.10$	$0.10 \rightarrow 0.20$

^{*}Higher rates increase control, flexibility, and cost.

- Closed-Loop Fumigation (CLF)
 - More effective than probing
 - More efficient than probing
 - ◆time
 - ◆fumigant
 - Safer than probing
 - reduces exposure to fumigant
 - → reduces dust
 - eliminates enclosed space entry