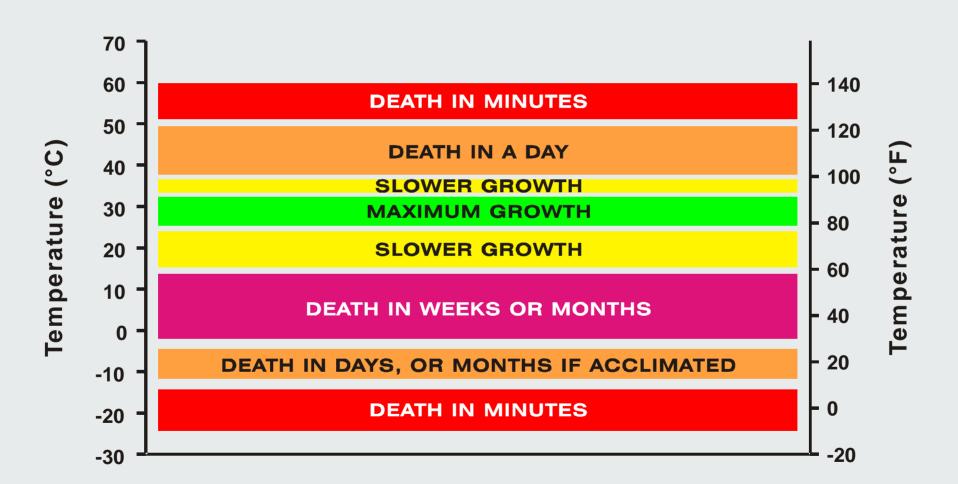
Heat Treatments

Paul Fields

Cereal Research Centre, Winnipeg pfields@agr.gc.ca www.agr.gc.ca/science/winnipeg/cgs_e.htm

Overview

- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety


History of Heat Treatments

- 1762, France: 69°C / 156 °F for 3 d, moth
- 1860, England: 57°C / 135 °F for grain
- 1910, USA: heat treatment of mills
- 1920, USA: 30 mills use heat in OH, PA
- 1932, France: MB as insecticide

History of Heat Treatments

- 1950's: Quaker Oats using heat
- 1983: EDB banned
- 1990's: increased interest in heat
- 1992: MB found ozone unfriendly
- 1994: Dursban in Cheerios
- 2005: MB to be phased out
- 2006: MB one-year extension US, Canada

Temperature Effects

Mechanism of Heat Death

- 40-50 °C / 105 to 120 °F dehydration important
- Above 50 °C / 120 °F
 - Cell membranes "melt"
 - Damage to enzymes
 - Change in salt balance

Time/temperature to control insects

- 24 h at 38°C / 100°F
- 12 h at 43°C / 110°F
- 5 min at 50°C / 120°F
- 1 min at 55°C / 130°F
- 30 sec at 60°C / 140°F

Mortality of adults exposed to heat

Insect	Mortality (%)	
	50°C / 120 °F, 20 s	50°C / 135 °F, 32 s
Cigarette beetle	35	99
Flat grain beetle	45	99
Lesser grain borer	45	97
Rice weevil	60	98
Red flour beetle	60	98
Granary weevil	70	94
Merchant grain beetle	85	100
Confused flour beetle	90	97
Saw-toothed grain beetle	97	98

Kirkpatrick and Tilton 1972

Differences Between Insects

Below 50°C / 120°F differences

Above 50°C / 120°F all very similar

Overview

- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety

Heat Disinfestation

- 50°C / 120°F for 24 h
- has been used in US-Canada since 1950's
- Need heat-tolerant equipment
- Can be done by plant personnel
- Need heat source

Protect unheated areas

Spray with approved contact insecticide to prevent insects from moving into cool areas

Clean-up

Remove harborages for insects

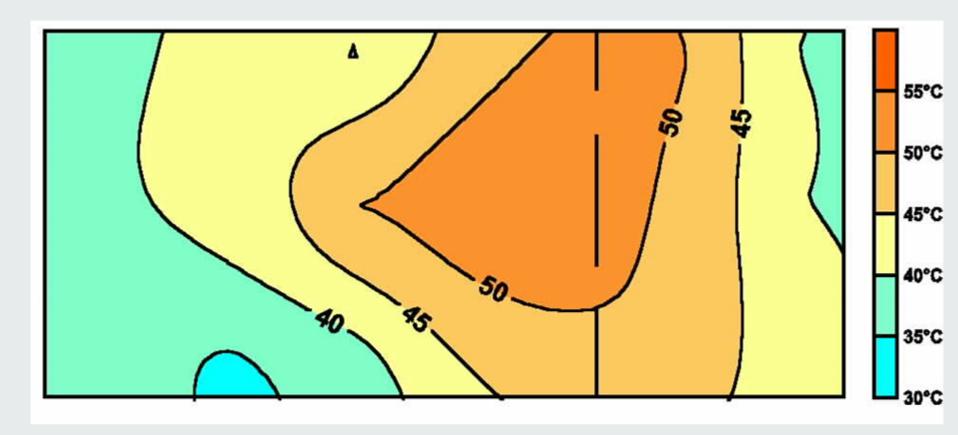
Steam Heat

Fixed heaters

Portable heaters

Fixed boilers

Gas Heaters (propane or natural)

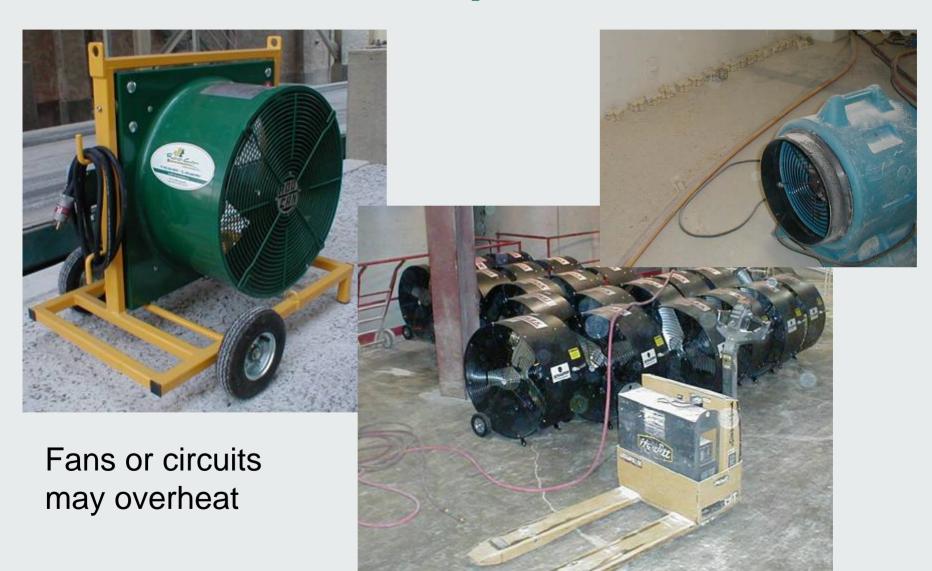


Electric Heaters

Variation in floor temperatures during heat-treatment of a flour mill

Dowdy 1999

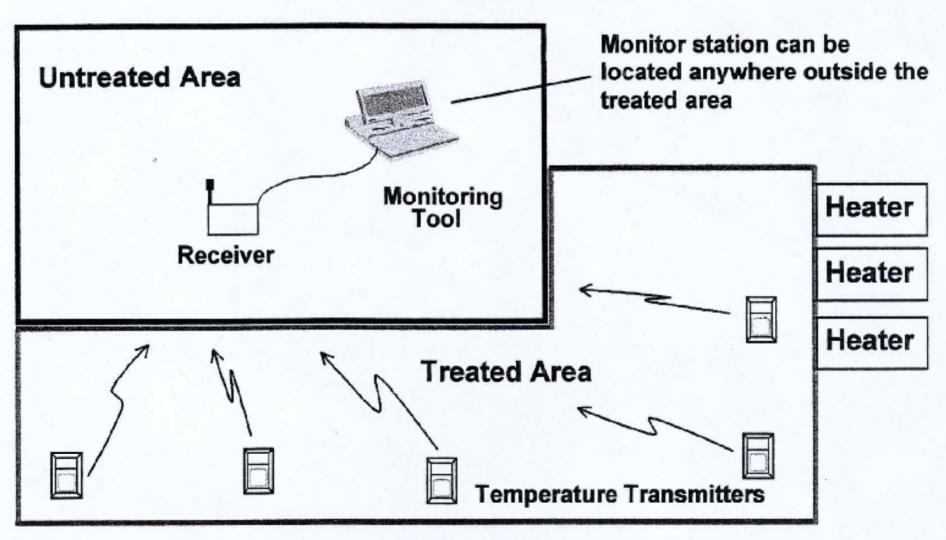
Ways to move heat



Fabric duct

Wire and plastic duct

Air circulation important


Measuring Temperatures

WIRELESS TEMPERATURE MONITORING PROPOSAL

Treated Facility

Measuring Temperature

- Measure hourly, several locations/floor
- Determines if too hot or too cool
- Be consistent from treatment to treatment
- Keep records
- Infra guns can lose calibration in heat
- No glass thermometers in food plants
- Have spare batteries

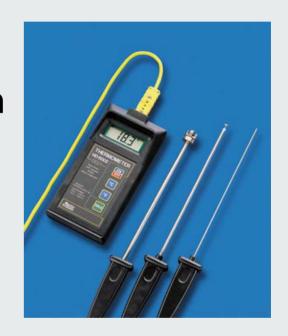
Overview

- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety

Heat Treatment at Quaker Oats (Peterborough, Canada)

- Sprinklers with 85 or 100°C
 185 or 210 °F heads
- Buys equipment to handle heat
- Uses steam heaters
- Building mix of old and new; wood, brick and concrete

- Friday Morning
 - Shut down lines
 - Clean up
 - Leave machines open
 - Remove heat sensitive ingredients/equipment
 - Loosen belts


- Friday Afternoon
 - Close doors and windows
 - Start heaters
 - Finish cleaning, removal of materials

Steam heater with powerful fan

- Friday Evening
 - Monitor air temperature at eye level in 4 corners of each room once an hour
 - Check building during temperature monitoring

- Saturday
 - Shut off fans in areas that have obtained 50°C / 120°F for 24 h in all 4 corners
 - Continue to monitor temperature

- Sunday Morning
 - Open windows and doors for cool down
 - Replace heat sensitive materials
 - Tighten belts

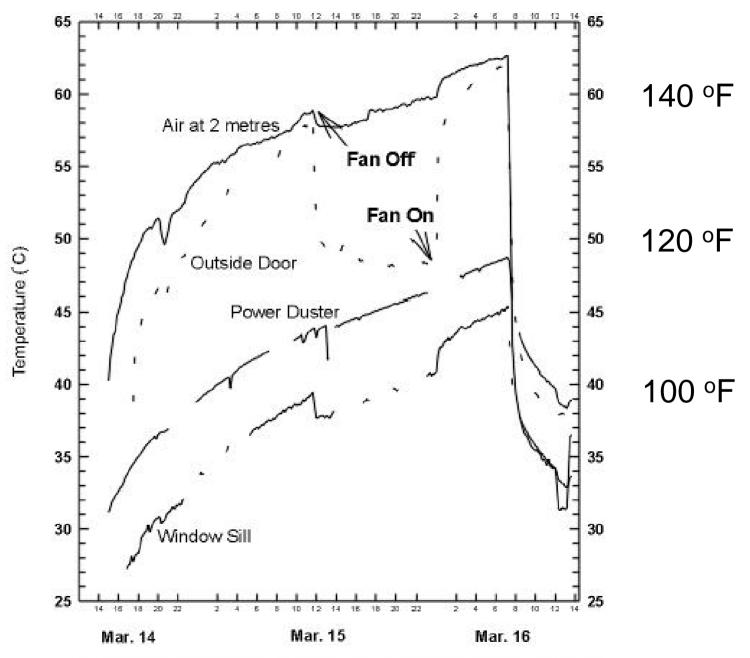


Figure 1. Temperatures at the basement, building 12-13, oat mill.

- Lines shut down for 48 h
- Treatment done by plant staff
- Need 50-55°C/120-130°F for 24 –30 h
- Done 4-6 times a year
- Use down-time for inventory
- Use steam heat from cooking boilers

Overview

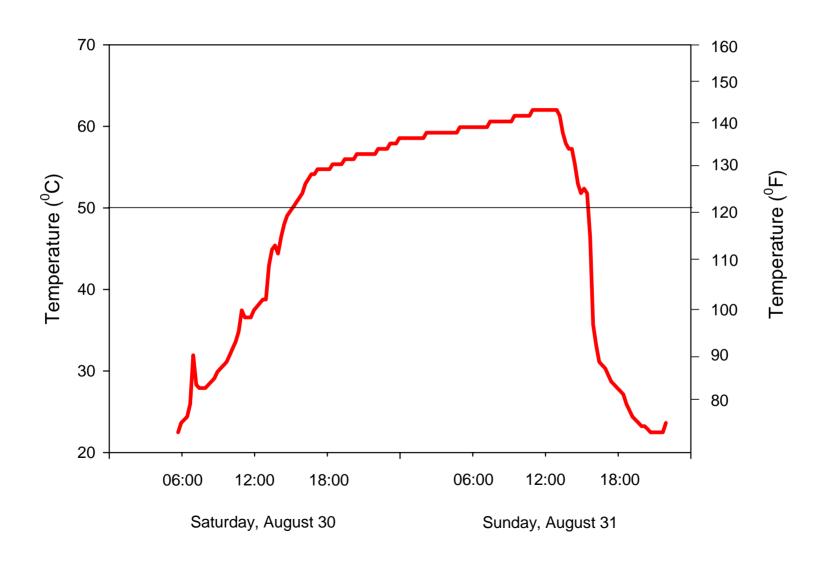
- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety

Temp-Air Propane Heaters: Mill 1

Propane, forced air heater

Insect Bioassay: Red Flour Beetle; eggs, larvae and adults

Insects pulled every 1 to 2 hours, one location



Insects pulled at end of treatment, many locations

Mill 1: Temp-Air

- Mill Shut down: 60 hours
- Heater type: propane, 7 heaters used
- Heaters On: 30.5 hours, 20 million BTU/hr
- Cost of propane: \$6,000 CND
- Temperature Highs: 58-73 °C /136-163 °F
- All insects dead at one location after 8.5 h
- 100% mortality of red flour beetle adults in 20 of 20 locations

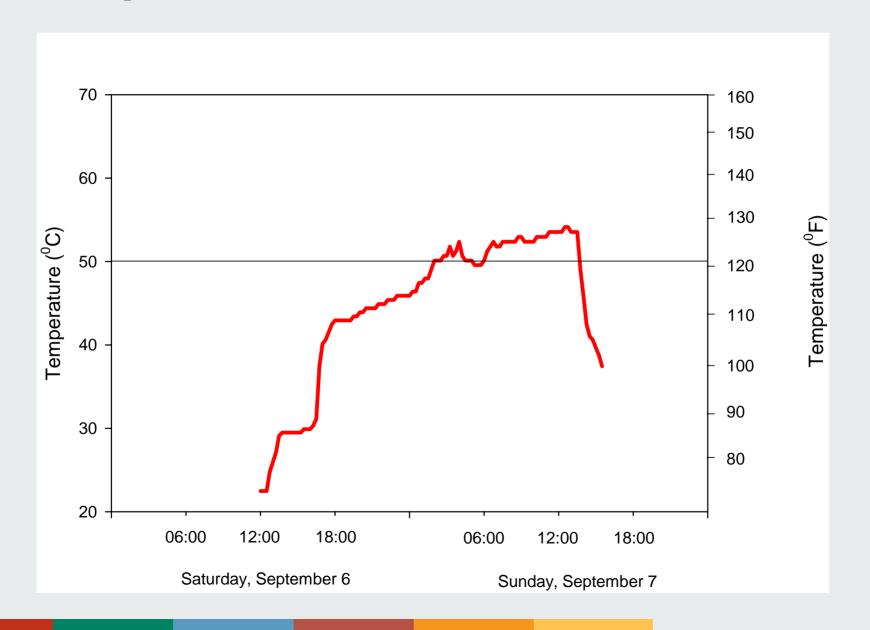
Temperature: Mill 1 with Propane

Problems Mill 1

- Fans cut-out due to circuit breaker becoming too hot (breakers in heated area, changed breakers to higher amperage during heat treatment)
- Some caking of flour in equipment (minor problem)
- One air hose line burst (air pressure should have been off during treatment)

Roo-Can Steam Heaters: Mill 2

Roll heaters into mill


Steam Heating: 18 heaters used

Mill 2: Roo-Can

- Mill Shut down: 30 hours
- Heaters: steam, 18 heaters used, 3 million BTU/hr
- Heaters On: 21 hours (3h shorter than initial plan)
- Cost of Steam: \$300 CDN
- Temperature Highs: 46-74 °C / 114-165 °F
- All insects dead at one location after 13 h
- 100% mortality of red flour beetle adults in 21 of 25 locations
- Mill management "More time, or more heaters would be required to get control in all locations"

Temperature: Mill 2 with Steam

Problems: Mill 2

- Some leaking of condensate on one floor (pump failure in basement)
- Some rented fans stopped working due to overheating
- Not total kill of insects in bioassays, or in mill

Flour beetles caught in dome traps.

Methyl bromide fumigation on July 26-27.

Site	Flour beetles as percent of pre-treatment (%)												
		Pre-Tre	eatmen	t	Post-Treatment								
	15	22	25	29	5	8	18	25	2	9	16	23	
	July	July	July	July	Aug	Aug	Aug	Aug	Sept	Sept	Sept	Sept	
Roller Floor	136	104	60	20	1.1	4.3	2.1	1.5	0.7	0.4	0.7	2.6	
Sifter Floor	134	60	106	7.5	0	0	0	1.4	0	0	0	4.3	

10 Dome traps used/floor

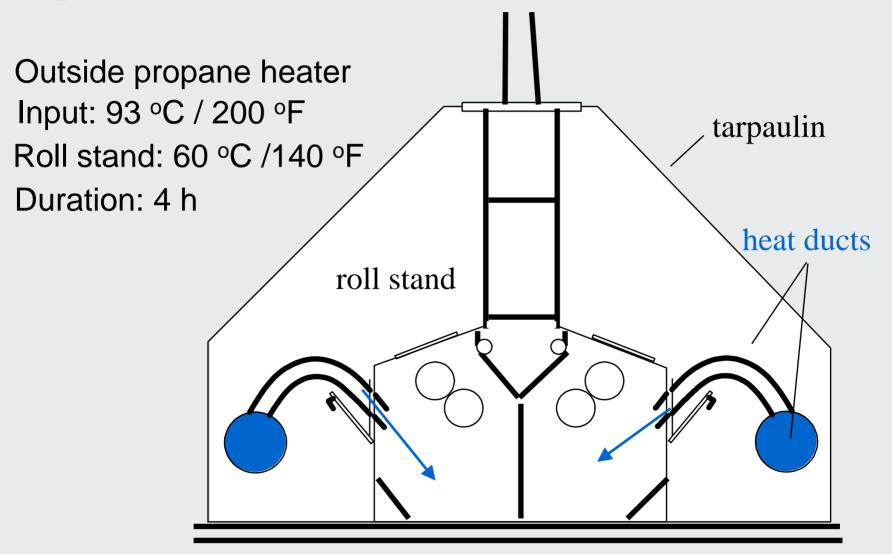
Flour beetles in dome traps.

Mill 1: Temp-Air heat treatment took place on August 29-31.

Site	Flour beetles as percent of pre-treatment (%)													
	Pre-Treatment							Post-Treatment						
	25 Jul	1 Aug	8 Aug	18 Aug	25 Aug	29 Aug	8 Sept	15 Sept	22 Sept	29 Sept	6 Oct	17 Oct		
Roller Floor	67	74	105	71	110	201	13	9	17	15	27	17		
Sifter Floor	37	65	77	68	140	245	4.5	5.7	7.4	5.7	6.2	7.6		

Conclusions

- Good control of insects by heat treatments
- No major damage to equipment
- Good method to locate insect problems in mill
- Mills shut down 30 to 60 hours


Overview

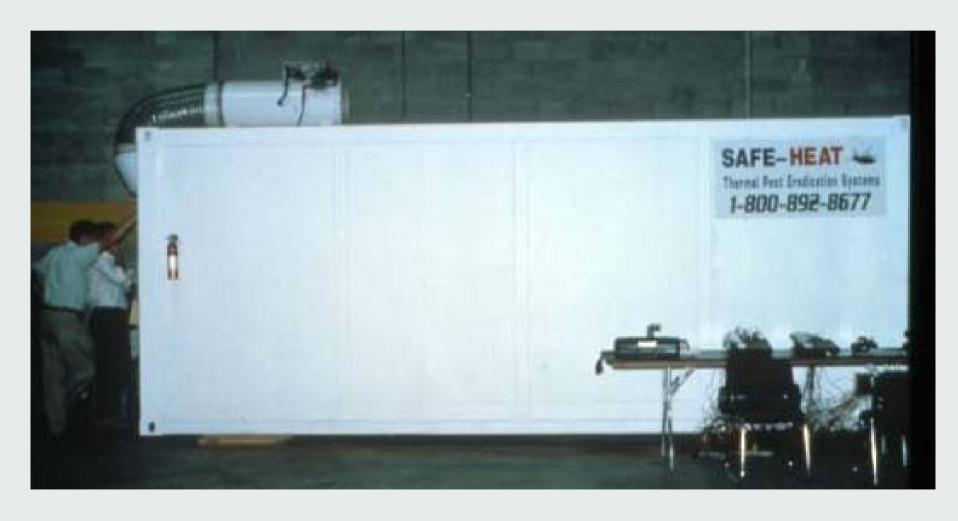
- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety

Spot or Portable Heating

- Spot heating of equipment
- Heat finished product
 - Trailer
 - On production line with longwave radiation

Spot Heat Treatment of Roll Stand in Swedish Flour Mill

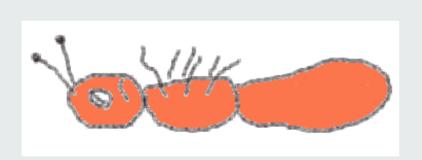
Long wave radiation


• 27 MHz wavelength

penetrates 15- 20 inches
(microwave only 4 inches)

•900 lbs/hr

Heat Final Product


Heat and other control methods

- Heat and DE
- Heat, phosphine and CO2
- Heat and ProFume (sulfuryl fluoride)
- Heat increased effectiveness of Tempo
- Heat and sampling

Overview

- History and biology of heat treatments
- Basics of a heat treatment
- Heat treatment at Quaker Oats
- Treatment using propane heaters
- Treatment using portable steam heaters
- Spot treatments with heat
- Heat with other methods
- Heat safety

Why do insects die at 50°C / 120°F, and we just get hot under the collar?

Subi at work in England

Size Matters

Subi is 40,000,000 X heavier than a red flour beetle

Red flour beetle

Insect body temperature = environment temperature

Sweat

- 99% water
- Salt
- Urea

2.5 M glands

Perspiration is one of the most underrated of all the vital functions of the body. Without this built-in thermostat, we would overbeat and eventually die. Dermis Hair Cells forming lining of duct **Epidermis** Cross section through sweat duct Sweat duct Dermis (oil-secreting) Sweat gland gland ? Blood supply to sweat gland sweat Subcutaneous fat

Types of Heat Stress

Heat Exhaustion

Heat Cramps

Heat Stroke

Tips to Avoid Heat Stress

- Drink lots of cool fluids often
- Drink even if you are not thirsty
- Wear loose clothing
- Take breaks from heat
- Elderly, heart problems, overweight low sodium diet at risk
- Avoid alcohol

Conclusions

- 50°C / 120°F for 24 h
- Has been used in US-Canada since 1950's
- Need heat-tolerant equipment
- Can be done by plant personnel
- Various heat sources available
- No regulatory approval needed

Thank-you for your attention

