Calculating Heat Energy Requirements

Sham Kashyap

Computing and Information

Sciences

Kansas State University

Overview

- Introduction
- Equations
- Graphical Analysis
- Issues
- Other Applications
- Discussion

Introduction

- H.T.C is a software program coded in Visual Basic using Microsoft Visual Studio .NET.
- It calculates
 - The amount of energy and fuel needed for the heat treatment of the facility.
 - Provides a graphical analysis of variations of fuel consumption with respect to changes in temperature and duration of heat treatment.

Surfaces

$$q_{\rm S} = \Delta T \times Area \times U$$

or
$$q_S = \Delta T \times Area \times \begin{pmatrix} \frac{1}{x} \\ \frac{x}{k} \end{pmatrix}$$
 or exposed wall. U: Coefficient of heat transfer of the material. k : Thermal Conductivity k : Thickness

 ΔT : Temperature difference of the

Equation applied to walls, windows, doors, ceiling and floor

Infiltration

$$q_I = \Delta T \times 0.018 \times Volume \times aircirculations$$

Steel

$$q_{St} = \Delta T \times 0.12 \times Steelweight$$

Total

$$q_{Total} = \sum q_S + q_I + q_{St}$$

Fuel consumption

$$Fuel = \left(\frac{q_{Total}}{q_{unit}}\right) \times \frac{1}{efficiency} \begin{cases} q_{unit} \\ \text{is the amount of energy} \\ \text{produced by the fuel per unit} \end{cases}$$

 The required energy is converted into fuel consumption to estimate the cost of energy needed

- In the software, the user has the option of
 - Changing efficiency values of fuels suiting the machinery used for heat up.
 - Choosing Raise and Peak Phases of the heat treatment
 - Adding new structural materials, fuels to the database

Graphical Analysis using HTC

- It can be used to predict the effects of a particular variation in heat treatment setting.
- In this sense, it is a tool to virtually compare two heat treatments on a building with different temperature and fuel settings.
- In this presentation, we take up an example and run the various analysis tools.

Facility Description

Rooms: Floor 1: 3

Floor 2: 2

Floor 3: 4

Floor 4: 2

Steel: 3000 Pounds

Volume: 175616 Cubic Feet

Air circulations per hour: 3

Temperature Settings:

Outside 75 F

Inside 80 F

Ground 65 F

Period 48 Hours

Target Temperature

140 F

Target Rate of Increase 5.4

F/hr

in temperature

Cost of fuels

 Effects of variation in target temperature

Cost of fuels

 Effects of variation in duration of heat treatment

Cost of fuels

 Effects of variation in starting temperature

Effects of variation in target temperature

 Effects of variation in target temperature

Effects of variation in starting temperature

 Effects of variation in starting temperature

Energy absorption in different materials

 Effects of variation in target temperature

Energy absorption in different materials

 Effects of variation in starting temperature

Issues

- Heat absorption by different materials
- Un-accountable losses
- Correction factor
- Effects of humidity and pressure
- Model verification

Heat Absorption and Temperature Rise

Variations in Heat Absorption

Other Applications

- How to reach a trade off between amount of fuel used, target temperature, peak temperature duration.
- If using multiple sources of energy, how to share energy requirement.
- Insect Mortality.

References

- William H. Severns, Julian R. Fellows, "Heating, Ventilating and Air Conditioning Fundamentals" Second Edition, John Wiley & Sons, Inc 1949.
- 2. Burgess H. Jennings, "The Thermal Environment" Harper & Row, 1978.
- Thomas J. Imholte," A guide to the Sanitary Design of Food Plamsts and Food Plam Equipment, Engineering for Food Safety and Sanitaion "Second Edition

Discussion