Introduction

- MB is being phased-out globally
- What can be done to...
 - accelerate reduction of MB use in food processing structures?
 - improve efficacy of MB alternatives such as SF and heat?
- In 2004, a research project was initiated at Purdue University and industry collaborators with the aim to develop a comprehensive analysis tool, and an automatic monitoring and decision support system for structural fumigation
- In 2008, a second project was initiated at Kansas State University in collaboration with Purdue University, USDA-ARS GIPPRC and industry collaborators to improve the structural fumigation process and advance the adoption of methyl bromide alternatives in the grain-based food processing industry
- Both projects were supported by USDA-CSREES Methyl Bromide Transition Grants as well as industry funds
- This presentation summarizes our findings and explores several possibilities and technologies to improve the structural fumigation process

Fumigation Experiments

Structural Fumigation Modeling

- Facility A was selected as the reference structure
- Computational Fluid Dynamics (CFD) software, Fluent®, was used to construct two flow models
 - A sub-model of the flow outside the reference mill for predicting pressure profiles on the structure’s walls created by wind speed & direction
 - A sub-model of the fumigation process inside the mill
 - Assuming no sorption
- Goal
 - To predict concentration data similar to that observed during the actual fumigation, given the same environmental conditions and fumigation practices

Geometry of the external and internal flow simulations
Historical weather data for the years in which the fumigation had the lowest (1996) and highest (2004) leakage rates
• Year-to-year variations in weather conditions could be substantial
 - Actual Ct = 950 vs. predicted Ct = 850 g-hr/m³
 - Initial concentration was almost 20% different (54.3 → 44.6 g/m³)
 - HLT was more than 100% different (10.7 → 23.3 hours)
 - Ct product was more than 70% different (476 → 840 g-hr/m³)
 - If the HLT of the 2004 fumigation was estimated based on the 1996 concentration record, the 2004 fumigation could potentially be a failure due to the lack of sufficient gas injection

Model Application: 11 year fumigations
• To evaluate the effects of multi-year weather conditions (1996 – 2006) on the gas leakage rate (i.e., HLT) and the concentration-time (Ci) product during structural fumigation in the mill
• 11 simulations with the same fumigation period of different years (1996 – 2006): 12:00pm July 4th to 12:00pm July 5th
• Hourly historical weather data recorded at a nearby airport: wind speed, wind direction and ambient temperature
• Every other parameter was assumed the same (e.g., building air-tightness, amount of injected fumigant, internal temperature)
• 2,500 lb of sulfuryl fluoride (SF) for each fumigation

Conclusions
• Even though sealing quality was maintained the same, year-to-year weather variations had a significant effect on fumigant leakage rates, causing variations in initial concentrations (45 – 54 g/m³), HLTs (11 – 23 hr) and Ct products (476 – 840 g-hr/m³)
• Non-optimized fumigation process
 - Overdose in the case of underpredicted HLT
 - Intermittent additional injection in the case of overpredicted HLT
• In order to optimize the fumigation process, using past fumigation data as the primary means for evaluating the effectiveness of temporary structural sealing quality and predicting HLT is not adequate
• Predictions of HLT and thus fumigation performance should incorporate quantifiable sealing effectiveness and weather information for the planned fumigation period
Model Application: Leakage rate, SF vs MB

- Is there any difference in the leakage rate between SF and MB?
- Repeat the 11-year simulated fumigations with MB
 - Same sealing quality and fan placement
 - Same weather conditions
 - Half of the fumigant amount used in the SF fumigations

Results

- Leakage rates of MB appeared higher than those of SF
 - HLT of MB was ≈2 hr lower than that of SF on average
 - Differences in gas concentration levels caused different stack effects
 - The outside air density was higher than the inside air density → Lower gas concentrations resulted in a greater stack effect

<table>
<thead>
<tr>
<th>Year</th>
<th>Init. Conc. (g/m³)</th>
<th>HLT (hr)</th>
<th>Ct (g-hr/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>27.3</td>
<td>16.8</td>
<td>360</td>
</tr>
<tr>
<td>1997</td>
<td>24.0</td>
<td>12.1</td>
<td>280</td>
</tr>
<tr>
<td>1998</td>
<td>27.5</td>
<td>16.4</td>
<td>359</td>
</tr>
<tr>
<td>1999</td>
<td>22.5</td>
<td>14.4</td>
<td>328</td>
</tr>
<tr>
<td>2000</td>
<td>25.5</td>
<td>17.4</td>
<td>355</td>
</tr>
<tr>
<td>2001</td>
<td>26.0</td>
<td>14.5</td>
<td>328</td>
</tr>
<tr>
<td>2002</td>
<td>25.2</td>
<td>19.5</td>
<td>358</td>
</tr>
<tr>
<td>2003</td>
<td>21.4</td>
<td>11.3</td>
<td>256</td>
</tr>
<tr>
<td>2004</td>
<td>18.2</td>
<td>9.8</td>
<td>208</td>
</tr>
<tr>
<td>2005</td>
<td>23.5</td>
<td>14.8</td>
<td>304</td>
</tr>
<tr>
<td>Avg</td>
<td>24.2</td>
<td>14.4</td>
<td>309</td>
</tr>
<tr>
<td>S.D.</td>
<td>2.7</td>
<td>2.9</td>
<td>50</td>
</tr>
</tbody>
</table>

- Results indicate that MB leaks more rapidly than SF
 - When wind dominates, the stack effect may be insignificant
 - If the outside air density is lower than the inside air density, higher gas concentrations will yield a greater stack effect

Model Application: Effect of sealing quality

- Three levels of sealing quality were verified by actual pressurization tests at the Hal Ross Mill
- A CFD model of the Hal Ross Mill was built and specified gastightness at these three levels
- A sensitivity analysis study was conducted using fumigation simulations of this model
 - Assuming 100 g/m³ of initial concentration
 - Assuming fixed wind speeds without buoyancy force

Results

- At any applied pressure, the leakage flow rate was always lower with better sealing quality

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>Flow rate (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>140</td>
<td>7</td>
</tr>
</tbody>
</table>

- Results show that HLT is a function of both wind speed and sealing quality
- Proper sealing increases HLT 3 – 4 folds from the non-sealed to the fully-sealed building
- HLT decreased several folds when wind increased from 2 to 10 m/s
 - Regardless of sealing quality, fumigation under severe weather should be avoided

- Results of additional simulations showed that when applying the same fumigant amount, HLTs of the two gases were essentially identical
Other Applications

- The models can be used to predict fumigation characteristics such as fumigant movement paths, concentration distributions, and leakage rate.
- The effects of fumigation variables such as wind speed and direction, capacity and placement of circulation fans, and fumigant release time on the efficacy of the fumigation process can be quantified.
- The simulations will provide insight into understanding the dynamics of the structural fumigation process and help fumigators to correctly determine the dosage amount, which in turn will yield increased efficacy and more successful fumigation jobs.
- Models could be used to quantify fumigant dispersal into the environment during fumigation and during aeration.

Importance of Circulation Fans

- Facility A
 - One fan per floor
 - Two monitoring points per floor
 - Volume = 28,317 m3
 - Differences in concentrations between floors were within 5 g/m3.

- Facility B
 - No fan
 - Two monitoring points per floor
 - Volume = 6,666 m3
 - Differences in concentrations between floors were greater than 5 g/m3.

Importance of Sealing

- The fumigation process can be modeled by:

$$C_t = \frac{1}{C_0}$$

- The theoretical Ct product can be described by:

$$C_t = \frac{H^L \times (0.2 - 2 \ln \alpha)}{\ln 2}$$

- Although it has not yet been quantified, HLT is the direct function of sealing quality.

Key Factors To Improving Structural Fumigation

- Despite the fact that Facility A is more than four times larger than Facility B, the fumigant in Facility A was more uniformly distributed because of the circulation fans.
- Circulation fans dominate gas movement and thus are most important for achieving uniform distribution.
 - The optimum gas distribution can be achieved by proper sizing and placement of circulation fans.
- Currently, our CFD models are being used to evaluate the effects of capacities and placements of circulation fans on gas distribution.
 - This would allow specification of the minimum/optimum fan capacity/number required for a particular fumigation volume.
Importance of Sealing

- At any given exposure time the fumigation process with a higher HLT...
- When Mill A’s HLT increased from 6 to 10 h, the achieved Ct product increased by 50% (achieving approximately the same Ct product)
- When Mill C’s HLT decreased from 20 to 8 h, the fumigant usage increased by 50% (given the same fumigant usage)

Importance of Fumigated Space

- Temperature monitoring should be incorporated as a best management practice in every fumigation management plan

Importance of Fumigated Space Temperature Monitoring

- Assuming HLT = 12 hr, exposure time = 24 hr and volume = 100 m³
 - At 30°C, required SF = 4.6 kg
 - At 21°C, required SF = 10.7 kg

- Temperature monitoring should be incorporated as a best management practice in every fumigation management plan

Facility Pressurization Test

- Allows for quantification of sealing quality and thus gas leakage ahead of fumigation
 - Determine the predicted HLT
 - Raise predicted HLT to target HLT with extra sealing if too low
 - Calculate precise gas dosage
 - Monitor fumigation to track measured HLT against target HLT
 - Correct fumigation problems in real time

Importance of Fumigant Gas Monitoring

- In one of our experiments, an unforeseen problem was detected early only because of continuous gas monitoring

Table: Importance of Sealing – Fumigation Experiments

<table>
<thead>
<tr>
<th>Facility</th>
<th>Ambient Conditions</th>
<th>Inside Conditions</th>
<th>Fumigation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Importance of Fumigated Space Temperature Monitoring

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMM</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RBF</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RW</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table: Importance of Sealing – Fumigation Experiments

<table>
<thead>
<tr>
<th>Facility</th>
<th>Ambient Conditions</th>
<th>Inside Conditions</th>
<th>Fumigation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Importance of Fumigated Space Temperature Monitoring

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMM</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RBF</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RW</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table: Importance of Sealing – Fumigation Experiments

<table>
<thead>
<tr>
<th>Facility</th>
<th>Ambient Conditions</th>
<th>Inside Conditions</th>
<th>Fumigation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Importance of Fumigated Space Temperature Monitoring

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMM</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RBF</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
<tr>
<td>RW</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.68</td>
<td>0.63</td>
<td>0.59</td>
<td>0.55</td>
<td>0.51</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Importance of Fumigant Gas Monitoring

- During the first four hours, fumigant (MeBr) concentrations were unexpectedly low at most locations
 - Initial MeBr introduction was 181 kg (400 pounds) and approximately 40 g/m³ concentration was expected
- At the fourth hour, it was discovered that a small ventilation exhaust fan was unintentionally left operating
 - Additional 102 kg (225 pounds) of MeBr were added
- Without continuous gas monitoring, the fumigation would have been a total and completely undetected failure
 - Many millers licensed to fumigate with MeBr but no requirement to monitor

Superposition

- Quadratic superposition method
 - described in ASHRAE Handbook
 - used by the HVAC industry to quantify air infiltration in houses for energy saving and in-door air quality purposes

- Stack coefficient
- Equivalent leakage area
- Wind coefficient
- Leakage due to stack effect
- Total leakage rate
- Leakage due to wind effect
- Temperature difference
- Wind velocity

Relating Sealing Quality to HLT

Pressurization Test

- Standardized pressurization test: ASTM, CGSB, ISO
- Qualitative indication of sealing quality
 - Correlation between air leakage and pressure acting on the building

Superposition: Determining Parameters

- Determined the equivalent leakage area:
 \[Q = c(A_p)^2 \]
 \[A_i = \frac{100000 \sqrt{2Ap}}{C_o} \]
 \[Q = \frac{A_i}{1000} \sqrt{C_o M + C_o U^2} \]
- Determined the stack and wind coefficients under fixed environmental conditions:
 \[Q = \frac{A_i}{1000} \sqrt{C_o M + C_o U^2} \]
Key Points

• Accurate HLT prediction → Benefits to optimizing structural fumigation
• Extensive experimental study is needed
 – Quadratic superposition method was developed specifically for application in residential houses
 – Superposition method already includes a set of inherent assumptions (e.g., pressure distribution, leakage characteristic, and assumed values of parameters)
 – HLT prediction accuracy relies on estimations of the stack and wind coefficients → These coefficients of each structure are unique

Benefits of Comprehensive Monitoring System

• Automatic direct data entry for fumigation decision support software such as Fumiguide
 – More accurate HLT and Ct product calculations
 – Better fumigation records for future injection/monitoring/circulation fan/sealing plans
• Possibilities for new fumigation control strategies
 – Incorporation of fumigated space temperature for dynamic achieved Ct product calculation
 – HLT and Ct predictions based on real-time and forecast external and internal environmental conditions
• Easy-to-setup monitoring system
 – Less labor needed
 – Faster fumigation preparation and cleanup: reduced production down time

Ideal Comprehensive Monitoring System

• Automated system
• Gas concentration acquisition
 – Wireless concentration sensing modules at multiple mill locations
• Environmental data acquisition
 – Wireless mill T/RH sensors
 – Wireless weather station with wind speed & direction, T and RH, or internet forecast from a nearby weather station
• Laptop with cell phone/broadband modem and wireless local data network card
• Fumigation decision support software

Automated Monitoring and Decision Support System

Summary – Improving Structural Fumigation

• Circulation fan efficacy, mill temperature, wind speed & direction, sealing efficacy, and fumigant sensor accuracy significantly impact fumigation success
• Modeling the fumigation process helps to quantify the effect of these parameters on fumigation success
• Circulation fans aid in the uniform distribution of the fumigant
 – Natural convection and diffusion are much slower processes
• Mill temperature has a direct effect on needed Ct product
 – Decrease with time needs to be monitored to adjust Ct and finetune needed fumigant amount to achieve insect kill
• Wind speed & direction and temperature difference affect fumigation gas leakage and therefore HLT and fumigation success
Summary – Improving Structural Fumigation

• Sealing directly improves HLT
 – As HLT increases from 10 to 20 h, Ct increases (and needed fumigant use decreases) by up to 40%
• Pressurization testing should be explored/utilized to check sealing efficacy before fumigation starts
 – Allows for HLT prediction, needed sealing improvements, and setting of a target HLT
• Monitoring of each fumigation should occur in real-time
 – Changes in actual HLT can be tracked against target HLT
• Accuracy of fumigant sensor directly affects over- or underdosing and thus cost of fumigation
 – 10% accuracy results in 11% dosage variability
 – 50% accuracy results in 55% dosage variability

Acknowledgement

• The findings reported were part of two projects funded by USDA-CSREES-MBT Special Grants 2004-51102-02199 awarded to Purdue University and 2008-51102-04583 awarded to Kansas State University
• Thank you to the following collaborators:
 – USDA-ARS GMPRC
 – Fumigation Service and Supply Inc, Westfield, IN
 – Dow AgroSciences LLC, Indianapolis, IN
 – Industrial Fumigant Company, Kansas City, KS
 – Several flour mills