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ABSTRACT: Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for
drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study
aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model
for CPP classification. We evaluated peptide embeddings generated from BEPLER, CPCProt, SeqVec, various ESM variants (ESM,
ESM-2 with expanded feature set, ESM-1b, and ESM-1v), ProtT5-XL UniRef50, ProtT5-XL BFD, and ProtBERT. We developed
pLM4CCPs, a novel deep learning architecture using convolutional neural networks (CNNs) as the classifier for binary classification
of CPPs. pLM4CCPs demonstrated superior performance over existing state-of-the-art CPP prediction models, achieving
improvements in accuracy (ACC) by 4.9−5.5%, Matthews correlation coefficient (MCC) by 9.3−10.2%, and sensitivity (Sn) by
14.1−19.6%. Among all the tested models, ESM-1280 and ProtT5-XL BFD demonstrated the highest overall performance on the
kelm data set. ESM-1280 achieved an ACC of 0.896, an MCC of 0.796, a Sn of 0.844, and a specificity (Sp) of 0.978. ProtT5-XL
BFD exhibited superior performance with an ACC of 0.901, an MCC of 0.802, an Sn of 0.885, and an Sp of 0.917. pLM4CCPs
combine predictions from multiple models to provide a consensus on whether a given peptide sequence is classified as a CPP or non-
CPP. This approach will enhance prediction reliability by leveraging the strengths of each individual model. A user-friendly web
server for bioactivity predictions, along with data sets, is available at https://ry2acnp6ep.us-east-1.awsapprunner.com. The source
code and protocol for adapting pLM4CPPs can be accessed on GitHub at https://github.com/drkumarnandan/pLM4CPPs. This
platform aims to advance CPP prediction and peptide functionality modeling, aiding researchers in exploring peptide functionality
effectively.

1. INTRODUCTION
The delivery of various cargoes (including small molecules,
oligonucleotides, proteins, etc.) into cells has the potential to
revolutionize future therapeutics.1,2 Researchers have made
significant progress in developing new methods to deliver
therapeutic compounds across the cell membrane.3−5 Anti-
microbial peptides (AMPs) are a naturally occurring class of
molecules known for their microbicidal properties. They are
often positively charged (cationic) and have a mixed
composition of water-loving (hydrophilic) and water-fearing
(hydrophobic) regions.6,7 Due to these properties, some AMPs

have emerged as a promising subgroup within a larger category
called cell-penetrating peptides (CPPs).8 In general, they are
short peptides, typically containing 5−50 amino acids. They
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possess a unique ability to transport various molecules,
including small molecules, proteins, and even large particles,
directly into cells with minimal harm to the cell membrane.9−11

In recent years, CPPs have emerged as promising drug delivery
vehicles, enabling the transport of pharmacologically active
molecules such as oligonucleotides,12 plasmid DNA,13 short
interfering RNA,14 peptide nucleic acid,15 peptides,16,17

proteins,18 and nanoparticles,19 across the membrane. The
number of known CPP sequences has increased rapidly, with
new modified CPPs being developed to improve their stability
and bioavailability. These novel CPPs are most often derived
from the existing proteins and further optimized to be the
shortest peptides having maximum transportation capability
across the cell membrane.10,20 Advances in proteomic
technologies, including next-generation sequencing, have
significantly enhanced the understanding of CPPs.21 Research-
ers leverage gene editing and phage display to design new CPP
candidates22 and the techniques like fluorescent labeling and
Caco-2 cell arrays have been used then to assess their
membrane penetration ability.23 However, traditional in vitro
assays for identifying optimal CPPs remain slow and labor-
intensive.24 Moreover, CPP effectiveness is linked to both their
sequence and physical/chemical properties.10 The relationship
among sequence, properties, and effectiveness makes computa-
tional methods a powerful approach for identifying promising
CPP candidates. This approach significantly reduces the
experimental burden on researchers.25

Recently, machine learning (ML) approaches have gained
significant interest in predicting the structure and function of
peptides, protein, and other biomolecules.26 These methods
offer fast, reliable, and accurate predictions based solely on the
sequences, without requiring additional information.27 Several
ML models such as CPPpred,28 CellPPD,29 C2Pred,30

SkipCPP-Pred,31 CPPred-RF,32 MLCPP-2.0,25 and
BChemRF-CPPred33 have been reported for predicting
CPPs. These models utilize diverse methods, leveraging
features such as sequence composition, physicochemical
properties, dipeptide composition, motif information, and
biochemical features. Additionally, techniques such as
minimum Redundancy Maximum Relevance (mRMR), in-
cremental feature selection (IFS), and analysis of variance are
employed to refine these features and improve model
performance. This variety of approaches highlights the
flexibility of ML in CPP prediction and the ongoing quest
for enhanced accuracy and reliability. While existing methods
provide a comprehensive overview of algorithms, feature
encodings, and evaluation strategies,34 their reliance on a
limited set of features remains a key constraint. This restricted
representation hinders their ability to achieve optimal
prediction accuracy. The advent of transformers and large
language models has introduced nonhandcrafted (self-
supervised) features that can outperform traditional hand-
crafted features.35 This shift indicates that relying solely on a
limited set of hand-crafted features may not be sufficient for
optimal classification performance, despite the extensive use of
unsupervised learning in CNNs before the rise of transformers.
Advancements in natural language processing (NLP) have
spurred the development of protein language models (PLMs)
for downstream protein sequence tasks. These models, known
for their ability to capture complex patterns in data, are being
adapted for bioinformatics tasks. Inspired by the success of
transformer-based models in NLP tasks, researchers have
explored the use of pretrained PLMs for various protein/

peptide sequence analysis and prediction tasks.36−43 For
instance, a study by Martnez-Mauricio et al. focuses on
classifying AMPs using embeddings derived from ESM-2
models and highlights the effectiveness of different embedding
dimensions (640- and 1280-dimensional) from ESM-2 models.
These embeddings were found to yield statistically better
performances in quantitative structure−activity relationship
(QSAR) models compared to other methods.44 Furthermore,
recent advancements have introduced graph-based deep
learning approaches and PLMs for AMP classification, which
can be further explored for predicting CPPs. Garciá-Jacas and
co-workers demonstrated the effectiveness of graph-based
models with ESM-2 features for AMPs, which suggests
potential for similar approaches in CPP prediction.45

In this study, we leverage a diverse set of protein embedding
techniques to capture comprehensive and informative
representations from peptide sequences. These techniques
include BEPLER embedding for capturing structural informa-
tion from protein sequences using a multitask learning
framework,46 CPCProt embedding for leveraging contrastive
predictive coding to maximize mutual information between
local and global sequential embeddings,47 SeqVec embedding
for biophysical properties using the ELMo model from natural
language processing,48 ESM-based embeddings (ESM-2, ESM-
1b, ESM-1v), which utilize BERT-based architectures for
complex relationship learning,41,49,50 and ProtT5-based
embeddings (ProtT5-XL-UniRef50, ProtT5-XL-BFD, ProtT5-
Port-BERT), which employ transformer architectures adapted
from powerful NLP models for protein sequence model-
ing.40,42,51 To the best of our knowledge, existing studies have
not employed PLMs for the feature representation of CPP
sequences for developing prediction models. This work aims to
address this gap by comparing different PLMs and developing
PLM-based models in conjunction with CNN for CPP
prediction. This multifaceted approach has the capability to
capture a wider range of sequence features relevant to peptide
function identification, potentially leading to more robust
models that overcome limitations observed in existing
methods.

2. MATERIALS AND METHODS
2.1. Data Set Construction. Due to the disparate nature

of the training data sets used by the existing methods, we
constructed a comprehensive data set from several well-
established resources like CPPsite2.0, C2Pred, CellPPD,
MLCPP 2.0, and KELM-CPPpred. Positive examples (CPPs)
were predominantly experimentally validated sequences.
Negative examples (non-CPPs) were sourced from the same
databases and included sequences identified through exper-
imental validation, computational predictions, or literature
references indicating that they lack cell-penetrating proper-
ties.25,29,30,52,53 A total of 10,606 sequences were collected.
These sources were chosen due to their comprehensive
collections of CPP and non-CPP sequences. First, the positive
and negative samples (CPPs and non-CPPs) were grouped,
resulting in 5276 CPPs and 5330 non-CPPs. Sequences
containing specific modified peptide sequences were identified
and subsequently removed to maintain consistency and
compatibility with standard sequence-based analysis methods.
For compatibility with protein embedding techniques and
machine learning models, we excluded peptide sequences
containing nonstandard or modified residues. We further
performed a redundancy check to ensure nonredundant
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sequences for further analysis. This involved using in-house-
developed Python scripts that efficiently identified and
removed duplicate sequences. Initially, redundant sequences
within the CPP and non-CPP groups were removed.
Subsequently, a second check was conducted to eliminate
redundancies between the CPP and non-CPP sequences,
ensuring the quality of the data set for optimal machine
learning performance. Following these steps, the nonredundant
CPP and non-CPP sequences were labeled as 1 and 0,
respectively. This resulted in a final data set comprising 1399
CPPs and 4080 non-CPPs, ready for machine learning model
development. To compare existing methods with the method
developed in this study, benchmark validation data sets were
used. These data sets were downloaded from independent data
sets provided in Pandey’s work53 and were referred to as
“kelm” for convenience.
2.2. Protein Language Models for Embedding the

CPP Sequences and Analysis. This study comparatively
explores the application of a diverse array of advanced PLMs to
generate embeddings in the context of predicting CPPs. The
models selected encompassed various architectures and output
vector dimensions (feature dimensions) to capture distinct
aspects of the peptide sequences. Among the models employed
was BEPLER, which utilizes a transformer-based approach to
generate 121-dimensional embeddings. CPCProt, on the other
hand, utilize 512-dimensional embeddings. These models
encode biological sequence data into high-dimensional
numerical representations using deep learning techniques.
Additionally, SeqVec, known for its bidirectional LSTM
architecture, was used to generate 1024-dimension embed-
dings, capturing both short- and long-range dependencies
within sequences that are crucial for the prediction. ProtT5-
XL, trained on comprehensive data sets like UniRef50 and Big
Fantastic Database (BFD), adopted a Transformer-based
architecture to yield embeddings with 1024 dimensions,
emphasizing scalability and performance in handling large-

scale protein sequence data. A variant, ProtT5-Port-BERT,
incorporated a BERT-style architecture to further enhance
portability and efficiency in generating protein sequence
embeddings.
This research also investigated variations within the

Evolutionary Scale Modeling (ESM) family, specifically,
ESM-1b and ESM-1v. These models excel at generating
protein sequence embeddings with a dimensionality of 1280.
They achieve this by incorporating evolutionary information
directly into their architecture. This unique approach
strengthens their ability to capture complex sequence patterns
crucial to predicting peptides. Furthermore, the investigation
encompassed features with evolutionary information using the
family of ESM-2 models. This family of models includes six
pretrained models with 6, 12, 30, 33, 36, and 48 layers,
respectively. These models scale up to 8 million, 35 million,
150 million, 650 million, 3 billion, and 15 billion parameters,
respectively. The training data comprised 65 million unique
sequences,41 more than double the amount used to pretrain
the previous ESM-1b model (27.1 million unique protein
sequences).50 The implementations of BEPLER,46 CPCProt,47

and SeqVec48 embeddings were sourced from the Bio
Embeddings Python library.54 For the ESM2 variants with
dimensions of 320, 480, 640, and 1280, we leveraged the
publicly available code and pretrained models hosted on the
ESM Gi tHub repo s i t o r y (h t tp s : //g i t hub . com/
facebookresearch/esm).42 ProtT5-XL with UniRef50 and
BFD, along with ProtBERT, were sourced from the ProtTrans
GitHub repository (https://github.com/agemagician/
ProtTrans).40 The output of the embedding models is a
matrix N x M per peptide sequence, where N is the number of
peptides and M is the embedding size (i.e., the dimensionality
of the vector capturing the features of the peptide).
While larger PLMs with higher feature dimensions have the

potential to extract more intricate information from sequences,
improving performance in downstream tasks,39,41,42 studies by

Figure 1. Schematic framework for predicting peptides as CPPs and non-CPPs by integrating protein language models (pLMs) and convolutional
neural networks (CNNs). Peptides of any length are encoded into varied dimensional embeddings by pLMs and then fed into the CNN model.
The first CNN layer consists of 64 filters, each undergoing 1D convolution with a kernel size of 5 and a ReLU activation function. This is followed
by down sampling via a max-pooling layer, resulting in a 64 × 640 feature matrix. The next convolutional layer has 128 filters followed by another
max-pooling layer, resulting in a 128 × 320 feature matrix. This feature matrix is flattened into a 1D vector and passed into a dense layer with 256
neurons and ReLU activation. The final output layer consists of one neuron with a sigmoid function for predicting whether the peptide is a CPP or
a non-CPP.
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Martińez-Mauricio et al. have demonstrated that higher
dimensions do not always result in better model perform-
ance.44 This highlights the need to manage the “curse of
dimensionality”, particularly in smaller data sets, where higher
feature dimensions can hinder performance. However, in the
case of allergen prediction, larger PLMs with higher feature
dimensions have demonstrated superior performance.39

Specifically, ESM-2 with a dimension of 2560 achieved the
best performance, illustrating that in larger data sets with rich
feature spaces, high-dimensional embeddings can effectively
improve model accuracy. This underlines the importance of
balancing feature dimension and data set size for optimal
model performance. This study is the first of its kind to utilize
various PLMs with different dimensions for representing CPP
and non-CPP sequences and building deep learning models.
The schematic framework of pLM4CPPs integrating pLMs and
CNNs for predicting CPPs is shown in Figure 1. To assess the
effectiveness of considered PLMs in representing CPPs for
bioactivity prediction, Uniform Manifold Approximation and
Projection (UMAP) was used to visualize the high-dimensional
embeddings in a two-dimensional space.55 The sequence logo
was generated using the positive peptides from the kelm
dataset and the active peptides from the dataset used for
training and testing the model, using the MEME Suite.56 These
sequences were aligned, and the frequency of each amino acid
at every position was calculated. The sequence logo was then
constructed to visualize these frequencies, with the height of
each letter representing the relative frequency of the
corresponding amino acid at that position.
2.3. Data Preparation for Model Training and

Evaluation. Following the acquisition of protein sequence
embeddings, the data set was split into training and testing sets
using an 80:20 ratio, ensuring random distribution with a fixed
random seed for reproducibility. Specifically, 80% of the total
CPP sequences (1119 sequences) and 80% of the total non-
CPP sequences (3264 sequences) were allocated to the
training set, while the remaining 20% (280 CPP sequences
and 816 non-CPP sequences) were designated for the test set.
To ensure an independent evaluation of the model’s
performance on unseen data, the kelm data set used for
model validation was kept separate and not included in either
the training or test data sets. To ensure that the feature values
were on a similar scale, we normalized the data using the
MinMaxScaler from the scikit-learn library. The scaler was
fitted to the training data and then applied to both the training
and testing sets. This preprocessing step helped improve the
performance and convergence of the machine learning models
used in subsequent analysis. This normalization ensured
consistency in the feature space between training and testing,
allowing for a fair evaluation of the model performance.
Subsequently, we rigorously compared the effectiveness of
different embeddings in conjunction with CNNs for CPP
prediction and development of pLM4CPPs.
2.4. Convolutional Neural Network Architecture. The

CNN model architecture is designed to process the peptide
sequence embeddings generated from the considered PLMs.
The architecture consisted of stacked layers that progressively
extracted increasingly complex features from the input
embeddings. The first layer was a one-dimensional convolution
with 64 filters, stride 1 and a kernel size of 5, designed to
capture local patterns within the embeddings. Batch normal-
ization was used to stabilize and accelerate training by
normalizing the activations of the previous layer (Figure 1).

A ReLU activation function was then applied to introduce
nonlinearity. Subsequently, a max-pooling layer with a size of 2
reduced the dimensionality, focusing on the most salient
features. To further enhance the network’s ability to learn
intricate patterns, a dropout rate of 0.25 was implemented after
each max-pooling layer to prevent overfitting and improve
generalization. This process was repeated with a second one-
dimensional convolutional layer comprising 128 filters and the
same kernel size of 5, followed by batch normalization, ReLU
activation, and max-pooling. The flattened output from the
convolutional layers was then fed into fully connected layers. A
dense layer with 256 neurons and ReLU activation was
incorporated to learn higher-level representations. Dropout
regularization with a rate of 0.5 was applied before the final
dense layer with a sigmoid activation function, which yielded
the predicted probability of a peptide sequence being a CPP.
The CNN architecture was optimized by using the Adam
optimizer with a learning rate of 0.001, configured to minimize
binary cross-entropy loss during training. Learning rate
scheduling was implemented using a step decay function,
halving the learning rate every 10 epochs to facilitate
convergence. Early stopping based on validation accuracy
with a patience of 20 epochs was employed to prevent
overfitting. Model checkpointing ensured that only the best-
performing model based on validation accuracy was saved for
subsequent evaluation. Finally, class weights were adjusted to
address class imbalance by assigning a higher weight to CPPs,
improving the model sensitivity for this class.
2.5. Model Evaluation. To assess the performance of the

model, we first predicted the probabilities for each sample and
optimized the threshold using the Matthews correlation
coefficient (MCC). This optimized threshold helped to
convert probabilities into binary predictions. We then
calculated several key metrics. Accuracy (ACC) was
determined as the proportion of true results (both true
positives (TP) and true negatives (TN)) among all cases
examined. Sensitivity (Sn), or recall, measured the proportion
of actual positives that were correctly identified. Specificity
(Sp) was calculated as the ratio of true negatives (TN) to the
sum of true negatives and false positives (FP), indicating that
the proportion of actual negatives was correctly identified. The
MCC assessed the quality of binary classifications by
considering true positives, false positives, false negatives, and
false negatives (FN). The area under the receiver operating
characteristic curve (AUC) represented the model’s ability to
distinguish between classes. Finally, Balanced Accuracy
(BACC), defined as the average of sensitivity and specificity,
provided a balanced performance measure, particularly
valuable for imbalanced data sets. These metrics collectively
provided a comprehensive assessment of the predictive
capabilities of the model on the test and external kelm data set.

= +
+ + +

ACC
TP TN

TP TN FP FN

=
+

Sn
TP

TP FN

=
+

Sp
TN

TN FP

= × + ×BACC 0.5 Sn 0.5 Sp

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01338
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=
× ×

+ × + × + × ×

MCC
(TP TN) (FN FP)

(TP FN) (TN FP) (TP FP) (TN FN)

2.6. Web Server Deployment and Resources. A user-
friendly web server for predicting CPPs is available at https://
ry2acnp6ep.us-east-1.awsapprunner.com. This server leverages
Amazon Web Services (AWS) App Runner and the Elastic
Container Registry (ECR) for deployment. The web interface
was developed using HTML and CSS, while Flask (version
2.2.2) facilitated model deployment. Due to computational
resource limitations, only the top-performing CPP prediction
models (excluding the largest model) are currently available on
the server. Users can combine predictions from these models
to achieve a consensus classification, increasing the confidence
of their CPP predictions. The server accepts data uploads in
various formats (XLS, XLSX, FASTA, and TXT) for
convenient large-scale processing. For comprehensive develop-
ment resources, including embedding generation, model
training, evaluation scripts, and protocols for predicting new
peptide activity using the pLM4CCPs models, please refer to
the GitHub repository: https://github.com/drkumarnandan/
pLM4CPPs.

3. RESULTS AND DISCUSSION
3.1. Peptide Sequence Analysis. We analyzed the

sequences of CPPs and non-CPPs in our data set to
understand their length distribution and amino acid
composition (Figures 2, S1, and S2). This analysis is crucial
because the effectiveness of machine learning models heavily
relies on the quality of their training data. Previous studies

suggested an enrichment of arginine (R) in CPPs compared to
non-CPPs, with lysine (K) and leucine (L) also showing
significant differences.20,32 We investigated these observations
in our comprehensive data set to explore the potential length
and amino acid preferences that differentiate CPPs and non-
CPPs. The length distribution of CPPs in our data set
displayed a notable preference for sequences between 10 and
20 amino acids, with peaks observed at 10−15 and 15−20
residues, followed by 5−10 and 20−25 residues (Figure 2A).
This distribution suggests that CPPs might optimize their
cellular uptake mechanisms within these specific length
constraints. Conversely, non-CPP sequences exhibited a
broader range of lengths, indicating a less defined length
preference (Figure 2A). The experimentally validated kelm
data set also displayed a similar length distribution (Figure
S2A). The raw count of amino acid residues in CPPs and non-
CPPs (Figure S1) could be biased due to differences in the
sequence length and number. To address this, we calculated
the percentage distribution, which normalizes the composition
relative to the total number of analyzed residues for CPPs and
non-CPPs. As expected, the results confirmed a significant
enrichment of positively charged residues like arginine (R) and
lysine (K) in CPPs, consistent with previous studies.20,32

Additionally, we observed that aromatic residues (tryptophan
(W), tyrosine (Y)) and histidine (H) also showed noticeable
differences between CPPs and non-CPPs (Figures 2 and S2).
Conversely, non-CPPs exhibited higher percentages of acidic
residues (aspartic acid (D) and glutamic acid (E)) and other
nonpolar residues.
To gain deeper insights into the key features distinguishing

CPPs from non-CPPs, we performed sequence logo analysis
(Figure 3). This analysis generates a graphical representation
of the amino acid composition at each position in a set of
aligned sequences, highlighting conserved and variable
residues. The figures are arranged in columns (top to bottom)
and ranked based on their statistical significance determined by
the MEME suite. The sequence logo analysis confirmed the
significant prevalence of arginine (R) and lysine (K) residues,
complementing the findings above and aligning with previous
experimental results.3,4 Additionally, the consistent presence of
aromatic residues (tryptophan (W), tyrosine (Y)), as well as
leucine (L), methionine (M), and phenylalanine (F) at various
positions suggests their importance in differentiating CPPs
from non-CPPs. These residues might contribute to stabilizing
the peptide structure and interacting with cellular mem-
branes.57,58 In contrast, the analysis of non-CPPs revealed a
more diverse and less consistent distribution of amino acids
(Figure S3). While hydrophobic and aromatic residues were
present, their patterns and positional preferences differed from
those observed in CPPs (Figures 3 and S3). Overall, this
comprehensive analysis suggests that CPPs share common
features, including enrichment of positively charged residues
(arginine and lysine), hydrophobic residues (leucine and
phenylalanine), and aromatic residues (tryptophan and
tyrosine). The conserved motifs and positional preferences of
these residues highlight specific regions and residues critical for
differentiating CPPs.23,57−60

3.2. Peptide Embedding Analysis. While the analysis of
peptide sequences provided valuable insights into the
compositional and length distribution patterns differentiating
CPPs from non-CPPs, it primarily focused on the presence of
specific amino acids. To delve deeper and capture the
potentially intricate relationships and hidden patterns within

Figure 2. (A) Distribution of peptide sequence lengths for CPPs
(cell-penetrating peptides) and non-CPPs. The plot illustrates the
count of sequences across different length ranges. (B) Distribution of
amino acid residues in CPP and non-CPP sequences represented as
percentages. The bars show the relative abundance of each residue
type among CPPs and non-CPPs, calculated from a total of 23,505
resides of 1380 CPP sequences and 84,918 residues of 4099 non-CPP
sequences.
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the sequences, we embedded the peptide sequences using
various state-of-the-art PLMs. These models serve as the
foundation for understanding the properties of the peptides
and their subsequent classification tasks. The PLMs used in
this study include BEPLER (121 features), CPCProt (512
features), SeqVec (1024 features), ESM2 (320, 480, 640, and
1280 features), ESM1b (1280 features), ESM1v (1280
features), ProtT5-XL UniRef50 (1024 features), ProtT5-XL
BFD (1024 features), and ProtBERT (1024 features). These
PLMs were trained with extensive protein sequence data,
enabling them to learn rich representations of the sequences.
This training process allows the models to capture contextual
information and long-range dependencies within the peptide
sequences, making them highly effective for generating
informative embeddings. To visualize the distribution of
these high-dimensional embeddings, we used UMAP, a
dimensionality reduction technique specifically designed for
data visualization. It prioritizes the preservation of local
similarities between data points over global distances. This
capability, along with its ability to handle outliers and
nonlinear relationships, makes UMAP particularly effective
for visualizing biological data compared to traditional methods
like principal component analysis.55 The UMAP distribution of
positive and negative samples of training, test, and external
data set was plotted in two-dimensional feature space created
from all embeddings, as shown in Figures 2 and S1. The
UMAP analysis revealed well-separated clusters for CPPs
(positive) and non-CPPs (negative), suggesting that the
embeddings effectively capture the inherent properties that
differentiate these peptide sequences. This distinct separation
in the two-dimensional space signifies a strong representation
of peptide information, which is crucial for downstream model
development and achieving optimal performance.61,62 This
aligns with the observed performance of pLM4CPPs on the
benchmark data sets (Table 2). These findings pave the way
for further analysis of the peptide embeddings and their
potential for the CPP classification model development.
3.3. Performance of PLM-Based Models on the Test

Data Set.We evaluated various embedding models on the test
data set to gauge the generalization capabilities of each model.

All models exhibited high ACC values exceeding 0.90, but
BEPLER, CPCProt, and ProtBERT showed lower BACC
values of 0.869, 0.853, and 0.871, respectively. These models
also had the lowest MCC values, indicating less effective
performance compared to other embeddings. SeqVec, on the
other hand, showed the highest ACC (0.932) and BACC
(0.901), suggesting its robust performance. Among the ESM2
variants, ESM2−480 performed superbly well, achieving an
ACC of 0.931 and a BACC of 0.907, along with high sensitivity
(0.860) and specificity (0.955), highlighting its balanced and
comprehensive classification capabilities. ProtT5-XL UniRef50
demonstrated the highest specificity (0.977), indicating a
strong ability to correctly identify negative cases. Despite the
high ACC (0.927) of ProtBERT, its slightly lower Sn (0.799)
and MCC (0.751) values suggest some limitations in its
performance. The ESM2 models, particularly ESM2−480 and
ESM2−1280, exhibited high MCC values (0.816 and 0.808,
respectively), emphasizing their ability to manage the
complexities of peptide sequences. The consistent AUC values
across most models, with SeqVec achieving the highest
(0.901), further underscore their capability in distinguishing
between positive and negative cases. This detailed analysis
highlights the variability in model performance, emphasizing
the importance of selecting appropriate embedding models
tailored to the specific characteristics of the peptide sequences
to achieve optimal classification results. Overall, the perform-
ance of these all-embedding models suggests that models like
SeqVec and ESM2 variants are particularly strong candidates
for achieving high classification performance, while others like
BEPLER and CPCProt might be less effective. These findings
provide valuable insights into the strengths and characteristics
of each embedding model, aiding in the selection of the most
suitable model for classification and prediction of the biological
activity of peptides.
3.4. Model Performance on the External kelm Data

Set. Several publicly available ML-based Cell-Penetrating
Peptide prediction models have been comprehensively
reviewed covering the biological significance of CPPs and
existing ML methods for CPP prediction.34 To evaluate these
prediction models, Su et al. conducted an empirical

Figure 3. Sequence motif analysis of CPPs from the (A) kelm data set and (B) test and training data set, highlighting the most statistically
significant motifs identified by the MEME suite. The logo plots are arranged in columns (1−3) and ranked based on their statistical significance (E-
value) as determined by the MEME suite.
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comparison of 12 models from six publicly available CPP
prediction tools on benchmark validation sets containing CPPs
and non-CPPs from the kelm data set.34 The kelm data set
consists of 96 experimentally validated CPPs and 96 non-
CPPs.53 For the empirical comparison, sequences that did not
meet the length requirements of certain predictors were
removed from the data set as some servers impose strict length
limitations for input sequences. For example, CellPPD limits
sequences to 1−50 residues, SkipCPP-Pred to no less than 10
residues, and KELM-CPP-pred to 5−30 residues.31,53,63

Additionally, they excluded the sequences with identity of
>30% against the sequences in the training data sets during the
empirical comparison.34 This empirical comparison demon-
strated that MLCPP performed well with these independent
validation sets. Building upon it, Manavalan and Patra further
improved MLCPP by utilizing a larger training data set, various
sequence-derived features, and conventional ML classifiers,
resulting in the next generation MLCPP 2.0.25 To assess the
performance of our models and benchmark them against
existing methods, we first evaluated MLCPP 2.0 on the
complete kelm data set, including all sequences without any
exclusions based on length (Tables 1 and S1). This approach
ensured a more comprehensive evaluation by avoiding
potential biases introduced through sequence length restric-
tions. Additionally, unlike the empirical analysis by Su et al., we
did not exclude sequences based on sequence homology with
training data sets. This is because the peptide embeddings
effectively capture the inherent properties that differentiate
these peptide sequences, even with potential sequence
similarities, as shown in Figure 4. By including all available
sequences, we aimed to explore the robustness and general-
izability of the models. The comparative results are presented
in Table 2.
A cursory view at the performance metrics of our models

suggests that most of the models outperform MLCPP 2.0,
except for CPCProt and ProtBERT. Specifically, our ProtT5-
XL BFD model showed exceptional performance on the kelm
data set, achieving the highest accuracy (ACC = 0.901) among
our models. It also demonstrated balanced Sn (0.885) and Sp
(0.917), along with a high MCC (0.802), suggesting an
excellent overall performance. ESM2−1280 model also
achieved superior performance, particularly in terms of
specificity (Sp = 0.978), accuracy (ACC = 0.896), and MCC
(0.796). The high specificity indicates that our model

effectively identifies non-CPP sequences, which is crucial for
reducing false positives. The ACC and MCC values emphasize
the balanced and reliable predictive power of these models
compared with other state-of-the-art models. SeqVec, on the
other hand, maintained an exceptional Sp (0.938), making it a
valuable choice for tasks requiring a strong true negative
prediction rate (identifying non-CPPs). Among the ESM2
variants, models with feature dimensions of 320, 480, and 640
displayed consistent performance with accuracy values around
0.880, high sensitivity (ranging from 0.802 to 0.900), and
MCC values around 0.735, highlighting their robustness. The
ESM-1b and ESM-1v models achieved accuracy values of 0.865
and 0.859, respectively, with MCC scores of 0.735 and 0.724.
Both models maintained good Sn and Sp, with ESM-1b at
0.802 and 0.927, and ESM-1v at 0.802 and 0.917. ProtT5-XL
UniRef50 achieved an accuracy of 0.875 with high Sp (0.948)
and an MCC of 0.758, suggesting its ability to correctly
identify negative cases. BEPLER achieved an ACC of 0.865
and an MCC of 0.737, with Sn and Sp values of 0.792 and
0.938, respectively. While BEPLER demonstrated a good
balance, its slightly lower sensitivity suggests potential
limitations in identifying true positive cases compared to
other models. CPCProt exhibited a lower overall performance
with an ACC of 0.833, an MCC of 0.668, and Sn and Sp values
of 0.802 and 0.865, respectively. This model might require
further development to handle diverse peptide sequences more
effectively. Similarly, ProtBERT had an ACC of 0.833 and an
MCC of 0.672, with sensitivity and specificity values of 0.771
and 0.896, respectively. Its lower Sn concentration suggests
limitations in identifying true positives. In comparison, the
MLCPP 2.0 model, which employs an ensemble learning
approach that includes conventional ML classifiers with various
sequence-based feature encoding algorithms, achieved an ACC
of 0.854, a sensitivity of 0.740, and a Sp of 0.969, with an MCC
of 0.728. While MLCPP 2.0 showed high Sp, its Sn was lower
compared with our best-performing models. This highlights
the advantage of our models in achieving a more balanced
performance. Overall, our embedding models, particularly
ESM2−1280 and ProtT5-XL BFD, demonstrated superior
performance on the kelm data set, with high ACC, Sn, Sp, and
MCC values.
This comprehensive evaluation of our models on test and

external independent data set confirms the robustness and
generalizability of models such as SeqVec, ESM2 variants, and

Table 1. Comparison Performance Metrics Such as Accuracy (ACC), Balanced Accuracy (BACC), Sensitivity (Sn), Specificity
(Sp), Matthews Correlation Coefficient (MCC), and Area under the ROC Curve (AUC) of Different Embedding Models on
Test Dataset Using a CNN Classifiera

embeddings models embedding dimension ACC BACC Sn Sp MCC AUC

BEPLER 121 0.908 0.869 0.791 0.947 0.752 0.869
CPCProt 512 0.902 0.853 0.752 0.954 0.735 0.853
SeqVec 1024 0.932 0.901 0.838 0.965 0.819 0.901
ESM2 320 0.923 0.892 0.831 0.955 0.795 0.893
ESM2 480 0.931 0.907 0.860 0.955 0.816 0.907
ESM2 640 0.923 0.880 0.791 0.968 0.792 0.880
ESM2 1280 0.929 0.893 0.820 0.966 0.808 0.892
ESM1b 1280 0.920 0.883 0.809 0.957 0.784 0.883
ESM1v 1280 0.923 0.889 0.820 0.958 0.794 0.889
ProtT5-XL UniRef50 1024 0.925 0.875 0.773 0.977 0.797 0.875
ProtT5-XL BFD 1024 0.921 0.891 0.831 0.951 0.789 0.891
ProtBERT 1024 0.927 0.871 0.799 0.944 0.751 0.871

aACC and MCC were used to select the best-performing models.
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ProtT5-XL BFD across different data sets. Additionally, we
conducted a 10-fold cross-validation to further assess the
stability and reliability of these top performing models. The
results, summarized in Table 3, show consistent performance
across all folds, with high ACC, BACC, and MCC for the top-
performing embeddings. These results indicate that our model
generalizes well across different subsets of the data. The cross-
validation analysis confirms that the SeqVec and ESM2

variants, as well as ProtT5-XL BFD embeddings, in
combination with our CNN-based architecture, offer the
most reliable performance for CPPs classification. Further-
more, we evaluated our models using five popular traditional
classifiers: Logistic Regression, Random Forest, Support
Vector Machine, k-Nearest Neighbors, and Multilayer
Perceptron, using the same PLMs embeddings. It is worth
noting that traditional classifiers have been reported to perform

Figure 4. Uniform manifold approximation and projection (UMAP) visualization of active and inactive samples from the kelm data set embedded
by various pretrained protein language models.
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comparably to deep learning methods in some cases, such as
the classification of antimicrobial peptides.64 The comparison
results, summarized in Table S2, indicate that while traditional
classifiers perform respectably, the CNN model consistently
achieves higher performance across most metrics, particularly
in terms of MCC and ACC. For instance, with SeqVec
embeddings, the CNN model achieved an MCC of 0.819 and
an ACC of 0.932, outperforming the best traditional model
(Logistic Regression), which had an MCC of 0.777 and an
ACC of 0.912. Similarly, for other embeddings like ESM2 and
ProtT5-XL BFD, the CNN model maintained superior
performance compared with traditional classifiers. Additionally,
Our CNN models demonstrated superior performance
compared to traditional classifiers (for instance, XGBoost)
on the external kelm data set. Among the CNN models,
ProtT5-XL BFD (1024 features) and ESM2 variants (except
for 320 features) showed the best ACC, sensitivity, and MCC.

In comparison, XGBoost models exhibited slightly lower MCC
values, with the best performance achieved by ESM2 (1280
features) (MCC: 0.744) and ProtT5-XL BFD (1024 features)
(MCC: 0.702). However, the XGBoost models showed higher
specificity across all embeddings but were less effective in
sensitivity compared to CNN models, suggesting CNN-based
models consistently outperformed XGBoost, as shown in Table
4.
Furthermore, we evaluated the performance of the k-NN

classifier using the 320-dimensional ESM-2 embeddings and
observed competitive results. Specifically, k-NN achieved a
slightly higher AUC (0.951) and MCC (0.800) than the CNN
model on the test data set, along with a better specificity
(0.967). However, on the external kelm data set, the CNN
model outperformed k-NN in balanced accuracy, sensitivity,
and MCC, indicating better generalization across unseen data,
as shown in Table S3. While CNN models demonstrated

Table 2. Performance Metrics Such as Accuracy (ACC), Sensitivity (Sn), Specificity (Sp), Matthews Correlation Coefficient
(MCC), True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) of Our Models and
Recently Reported MLCPP 2.0 and Other Available Models on the kelm Dataseta

CNN classifier features TP FP TN FN Sn Sp ACC MCC

our models
BEPLER 121 76 6 90 20 0.792 0.938 0.865 0.737
CPCProt 512 77 13 83 19 0.802 0.865 0.833 0.668
SeqVec 1024 77 6 90 19 0.802 0.938 0.870 0.746
ESM-2 320 86 13 83 10 0.900 0.865 0.880 0.761
ESM-2 480 77 7 89 19 0.802 0.927 0.865 0.735
ESM-2 640 83 10 86 13 0.865 0.896 0.880 0.761
ESM-2 1280 81 5 91 15 0.844 0.978 0.896 0.796
ESM-1b 1280 77 7 89 19 0.802 0.927 0.865 0.735
ESM-1v 1280 77 8 88 19 0.802 0.917 0.859 0.724
ProtT5-XL UniRef50 1024 77 5 91 19 0.802 0.948 0.875 0.758
ProtT5-XL BFD 1024 85 8 88 11 0.885 0.917 0.901 0.802
ProtBERT 1024 74 10 86 22 0.771 0.896 0.833 0.672
models reported in the literature on the kelm data set
MLCPP 2.0 71 3 93 25 0.740 0.969 0.854 0.728
MLCPP 53 5 43 18 0.747 0.896 0.808 0.630
CPPred-RF 59 12 36 12 0.831 0.750 0.798 0.580
KELM-AAC 49 5 43 22 0.690 0.896 0.773 0.580
KELM-hybrid-AAC 49 5 43 22 0.690 0.896 0.773 0.580
CPPred-FL 56 10 38 15 0.789 0.792 0.790 0.570
CellPPD 45 3 45 26 0.634 0.938 0.756 0.570
CellPPD-motif 45 3 45 26 0.634 0.938 0.756 0.570
KELM-PseAAC 59 13 35 12 0.831 0.729 0.790 0.560
KELM-DAC 40 1 47 31 0.563 0.979 0.731 0.560
SkipCPP-Pred 58 13 35 13 0.817 0.729 0.782 0.550
KELM-hybrid-PseAAC 59 14 34 12 0.831 0.708 0.782 0.540
KELM-hybrid-DAC 49 8 40 22 0.690 0.833 0.748 0.510

aACC and MCC were used to select the best-performing models.

Table 3. Top Model Performance Metrics Such as Averaged Accuracy (ACC), Balanced Accuracy (BACC), Sensitivity (Sn),
Specificity (Sp), Matthews Correlation Coefficient (MCC), and Area under the ROC Curve (AUC) Were Obtained from 10-
Fold Cross-Validation Using CNN Classifiers for the Top-Performing Models

embeddings models embedding dimension ACC BACC Sn Sp MCC AUC

SeqVec 1024 0.931 ± 0.009 0.896 ± 0.016 0.825 ± 0.034 0.968 ± 0.008 0.816 ± 0.024 0.949 ± 0.018
ESM2 320 0.931 ± 0.008 0.898 ± 0.017 0.831 ± 0.038 0.965 ± 0.010 0.816 ± 0.024 0.951 ± 0.010
ESM2 480 0.927 ± 0.013 0.885 ± 0.029 0.800 ± 0.623 0.970 ± 0.008 0.803 ± 0.038 0.944 ± 0.016
ESM2 640 0.925 ± 0.005 0.885 ± 0.009 0.803 ± 0.018 0.967 ± 0.009 0.799 ± 0.017 0.947 ± 0.015
ESM2 1280 0.928 ± 0.009 0.889 ± 0.015 0.838 ± 0.034 0.959 ± 0.014 0.809 ± 0.028 0.950 ± 0.012
ProtT5-XL BFD 1024 0.943 ± 0.006 0.885 ± 0.145 0.807 ± 0.034 0.963 ± 0.008 0.794 ± 0.018 0.943 ± 0.013

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01338
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01338/suppl_file/ci4c01338_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01338/suppl_file/ci4c01338_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


superior performance across most embeddings and metrics, the
results highlight that a simpler model, such as k-NN, can be
competitive in such classification tasks. Future work will
explore systematic comparisons of simpler models (e.g., k-NN,
decision trees) with deep learning approaches across diverse
embeddings to assess their interpretability, performance trade-
offs, and utility for different data sets. This exploration could
guide the development of models that better balance the
predictive power and explainability. However, it is crucial to
highlight that regardless of the classifier, the use of PLMs
significantly enhances feature representations, demonstrating
their importance in improving model performance. While
traditional classifiers and k-NN have their merits, the CNN
model clearly demonstrates a performance advantage for our
data set in terms of predictive power. These comprehensive
analyses and comparison emphasize the importance of
selecting models that perform well not only on test data sets
but also on external data sets, ensuring their applicability and
reliability for predicting CPPs. Additionally, it also suggests
that using feature representations based on PLMs may be a
potential solution to the feature representation challenges
commonly faced in developing ML-based models. While the
current approach focuses on sequence-based embeddings
without incorporating spatial information, future studies will
aim to further refine the methodology to enhance its
robustness and broader applicability.

4. CONCLUSIONS
The field of bioinformatics offers immense potential to
significantly reduce the time and cost associated with exploring
novel bioactive peptides. Accurate and rapid prediction models
are crucial for this advancement. AMPs represent a diverse
class of molecules with broad therapeutic potential. CPPs, a
subset of AMPs, possess the unique ability to deliver cargo
directly into cells, making them valuable tools for drug delivery
and gene therapy applications. In this study, we introduce
pLM4CCPs, a state-of-the-art deep learning model that
leverages pLMs for peptide embedding and CNNs for
classifying CPPs. To our knowledge, this work presents the
most comprehensive evaluation of various pLMs for CPPs
classification, including BEPLER, CPCProt, SeqVec, ESM
variants, ProtT5 models, and ProtBERT. Our findings

highlight the superior performance of ESM-1280 and
ProtT5-XL BFD embeddings in representing CPPs, achieving
high accuracy and reliability. The pLM4CCP model, employ-
ing CNNs for classification, demonstrates notable improve-
ments over the existing state-of-the-art CPP prediction
methods. Specifically, pLM4CCPs achieve significant enhance-
ments in ACC (4.9−5.5%), MCC (9.3−10.2%), and Sn
(14.1−19.6%). ESM-1280 achieved an ACC of 0.896, an MCC
of 0.796, an Sn of 0.844, and an Sp of 0.978. Similarly, the
ProtT5-XL BFD achieved an accuracy of 0.901, MCC of 0.802,
Sn of 0.885, and Sp of 0.917. These results underscore the
efficacy of these embeddings in capturing the essential features
for accurate CPP classification. The approaches integrated into
pLM4CCPs, which consolidate predictions from multiple
models, further enhance the reliability of peptide classification.
This methodology leverages the individual strengths of each
model, providing a robust consensus that significantly
strengthens the prediction accuracy and reliability. To benefit
the research community, we have developed a user-friendly
web server for bioactivity predictions, available at https://
ry2acnp6ep.us-east-1.awsapprunner.com. The related source
code, data sets, and adaptable templates, including resources
for embedding generation, model training, evaluation, and
protocols for predicting peptide activity using pLM4CPP
models, are freely available on GitHub at https://github.com/
drkumarnandan/pLM4CPPs. This resource is intended to
support further research and development in peptide
functionality and classification, enabling researchers to explore
and validate peptide-based applications more effectively.
Additionally, our approach and architecture can be transferred
to other bioactive peptide predictions beyond CPPs,
demonstrating its versatility and broad applicability in the field.

■ ASSOCIATED CONTENT

Data Availability Statement
All source code and data sets used in this publication are freely
available for academic use under an MIT license at https://
github.com/drkumarnandan/pLM4CPPs. The training and
testing data sets are in the “data set” directory. Additionally,
the independent evaluation data set is also stored in the “data
set” directory.

Table 4. Comparison of Performance Metrics, Including Accuracy (ACC), Sensitivity (Sn), Specificity (Sp), Matthews
Correlation Coefficient (MCC), True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN),
between our CNN Models and Traditional Classifier Models Such as XGBoost on the KELM Dataset

CNN classifier features TP FP TN FN Sn Sp ACC MCC

our models
SeqVec 1024 76 6 90 20 0.792 0.938 0.865 0.737
ESM2 320 77 13 83 19 0.802 0.865 0.833 0.668
ESM2 480 77 6 90 19 0.802 0.938 0.870 0.746
ESM2 640 86 13 83 10 0.900 0.865 0.880 0.761
ESM2 1280 77 7 89 19 0.802 0.927 0.865 0.735
ProtT5-XL BFD 1024 83 10 86 13 0.865 0.896 0.880 0.761
traditional classifiers

XGBoost
SeqVec 1024 66 3 93 30 0.688 0.969 0.828 0.684
ESM2 320 68 3 93 28 0.708 0.969 0.839 0.701
ESM2 480 65 2 94 31 0.677 0.979 0.828 0.688
ESM2 640 71 3 93 25 0.740 0.969 0.854 0.728
ESM2 1280 70 1 95 26 0.729 0.900 0.859 0.744
ProtT5-XL BFD 1024 65 1 95 31 0.677 0.990 0.833 0.702
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Figures S1 and S2 show the amino acid distribution and
lengths of CPP and non-CPP sequences. Figure S3
shows sequence motif analysis of non-CPP sequences.
Figure S4 shows UMAP visualization of positive and
negative samples of used data set. Table S1 shows
evaluation of external data set. Table S2 shows
performance metrics comparison of the best models on
the test data set with CNN and six popular traditional
classifiers. Table S3 shows performance metrics
comparison of ESM-320 embeddings on test and
external data sets using CNN and k-NN classifier
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