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ABSTRACT: To reduce the cost of the experimental character-
ization of the potential substrates for enzymes, machine learning
prediction models offer an alternative solution. Pretrained language
models, as powerful approaches for protein and molecule
representation, have been employed in the development of
enzyme−substrate prediction models, achieving promising perform-
ance. In addition to continuing improvements in language models,
effectively fusing encoders to handle multimodal prediction tasks is
critical for further enhancing model performance by using available
representation methods. Here, we present FusionESP, a multimodal
architecture that integrates protein and chemistry language models
with two independent projection heads and a contrastive learning
strategy for predicting enzyme−substrate pairs. Our best model
achieved state-of-the-art performance with an accuracy of 94.77% on independent test data and exhibited better generalization
capacity while requiring fewer computational resources and training data, compared to previous studies of a fine-tuned encoder or
employing more encoders. It also confirmed our hypothesis that embeddings of positive pairs are closer to each other in a high-
dimension space, while negative pairs exhibit the opposite trend. Our ablation studies showed that the projection heads played a
crucial role in performance enhancement, while the contrastive learning strategy further improved the projection heads’ capacity in
classification tasks. The proposed architecture is expected to be further applied to enhance performance in additional multimodality
prediction tasks in biology. A user-friendly web server of FusionESP is established and freely accessible at https://rqkjkgpsyu.us-east-
1.awsapprunner.com/.

1. INTRODUCTION
Most enzymes are proteins capable of catalyzing a wide range
of reactions within living organisms or under mild conditions
in vitro with up to over a million-fold compared to
spontaneous rates.1,2 Moreover, enzymes typically exhibit
promiscuity, facilitating multiple reactions that may include
physiologically irrelevant or potentially harmful processes.3,4 A
comprehensive mapping of enzyme−substrate relationships
will provide crucial guidance for future research in medicine,
pharmaceuticals, bioengineering, and agriculture.5−7 However,
it is prohibitively expensive to experimentally determine the
catalytic interactions between molecules and enzymes.
According to the UniProt Knowledgebase, approximately
10.8 million entries are related to enzymes, yet only 0.6% of
these sequences have high-quality annotations of catalyzed
reactions that are manually curated.8 There is a pressing need
for high-throughput methods to address the scarcity of
experimental validation in enzyme−substrate relationships.
Machine learning approaches have shown promising

performance in various compound−protein interaction (CPI)
prediction tasks.9−20 As a subset of CPI prediction, enzyme−
substrate pair prediction task is also a multimodal prediction
task, where two different “language” systems [e.g., amino acid

sequences of proteins and simplified molecular-input line-entry
system (SMILES) of small molecules] are involved.9,14 The
first challenge lies in effectively representing small molecules
and protein sequences as numerical vectors. Recent studies
have employed advanced neural network-based approaches for
automate representation learning, eliminating the need for
manual feature selection.9,16,21−23 These methods can be
broadly categorized into sequence-based and graph-based
machine learning approaches.
Sequence-based approaches represent proteins and small

molecules in a 1D text format (e.g., SMILES for molecules and
single-letter amino acid codes for proteins) by leveraging
natural language processing techniques. For instance, methods
like DeepDTA,11 GraphDTA,13 CSI,10 and Perceiver CPI18

utilized 1D convolutional neural networks (1D-CNNs) to
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extract features directly from protein sequences. Graph-based
approaches, on the other hand, model the structural properties
of molecules and proteins as graphs. Specifically, atoms or
amino acid residues serve as nodes, while bonds or spatial
interactions define the edges. Studies such as GraphDTA,13

PMF-CPI,19 CSI,10 and Perceiver CPI18 leveraged graph
neural networks (GNNs) to learn molecular representations
through 2D structures.
With the introduction of transformer architecture,24 various

pretrained large language models (LLMs) for protein and
molecular representation have been released.12,25−30 Pretrained
on billions of protein sequences and small molecules, these
LLMs have gained popularity for remarkable performance in
representation learning and generating across various down-
stream classification and regression tasks through transfer
learning or fine-tuning.2,5,12,15,25,27,29−33 In the study of Kroll et
al., a promising performance (accuracy = 91.5%) was achieved
for enzyme−substrate pair prediction task by employing a task-
specific fine-tuned protein language model (PLM) (i.e., ESM-
1b) and a pretrained domain-specific GNN.2 Subsequently,
Kroll et al. introduced a multimodal BERT model for
embedding a protein-molecule complex, where the protein
sequences and SMILES were input into a multimodal BERT
model. They achieved SOTA performance across four data
sets, including drug−target interactions, protein−small mole-
cule interactions, enzyme−substrate Michaelis constants (KM),
and substrate identification for enzymes, by concatenating
PLM-generated protein embeddings, chemical language model
(CLM)-generated molecule embeddings, and multimodal
encoder-generated protein−molecule embeddings.5
Effectively leveraging comprehensive enzyme and molecular

embeddings generated by their respective encoders is critical
for enhancing model performance. The most popular strategy
is to simply concatenate protein and molecule embeddings, a
method widely adopted and modified in the CPI discovery
community.11,13,17,20,34 Beyond that, in the study of Song et al.,
Kronecker products of protein and molecule embeddings as
additional features were concatenated with the original
embeddings to enhance CPI prediction performance.19

Attention mechanisms have been employed to integrate
multiview embeddings of drug molecules and proteins for
better representation learning.17,18 Specifically, Perceiver CPI
sequentially utilized a cross-attention block, a self-attention

block, and another cross-attention block, to integrate multiple
views of the molecules, refine molecular representations, and
capture the semantic relevance between proteins and
molecules.18 Besides, MGNDTI employed gated linear units
(GLUs) to filter nonimportant features from three encoders
and an extra mean square error (MSE) loss function to
enhance the representation learning from molecular graphs and
SMILES sequences, as well as element-wise manipulation for
knowledge fusion before concatenation,15 while MMCL-CPI
adopted 2D CNN blocks to extract a fused representation from
two stacked embedding matrixes.35 To maximize the
prediction performance, these models employed either more
encoders to enrich embedding protein and molecule or fused
embeddings to enhance enzyme−substrate complex represen-
tations. However, these methods often require either complex
fusion architecture design and substantial computational
resources or additional data sets for fine-tuning, which
impeded the deployment and application to different scenarios.
Inspired by the success of contrastive language-image

pretraining (CLIP), where two independent encoders for
images and texts were jointly trained to predict 400 million
correct image−text pairs,36 we hypothesized that enzyme and
substrate in a correct pair should be closer in a high
dimensional space after projection, while unrelated compo-
nents should be distinctly separated. This concept has been
explored in both single modality settings (e.g., protein−peptide
interaction)37,38 and multimodality settings (e.g., CPI and
drug−target interaction).39−42 Recent studies, such as
DrugCLIP39 and ConPLex,41 either followed the original
CLIP architecture with a few modifications to fine-tune the
protein encoder and the molecule encoder for better
representation learning39 or freeze the encoders and trained
the model with projection heads.41 The latter can save more
computation resources compared to the consumption of large
encoder fine-tuning in the former. This technical route was
also found in the study of Yu et al. (2023), where a project
head was designed to refine embeddings from ESM-1b for a
single modality task of enzyme commission (EC) number
prediction and achieved state-of-the-art (SOTA) performance
across various benchmark data sets, particularly excelling in
rare EC number predictions.43

Based on these advances, we proposed FusionESP,
leveraging the concept of contrastive learning to tackle

Figure 1. Model architecture for the enzyme−substrate pair prediction model.
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multimodal prediction tasks in the enzyme substrate prediction
task. Our objective of this work was to develop an advanced
machine learning module tailored for empowering existing
LLMs to predict enzyme−substrate relationships across a wide
range of proteins and molecules. This module aims to serve as
a practical tool to streamline experimental processes and boost
laboratory efficiency. In this study, we designed a simplified yet
highly effective model architecture that employs a contrastive
learning strategy. The architecture demonstrated a remarkable
performance enhancement in knowledge fusion within a
multimodal context, even with limited data. Specifically, we
utilized ESM-2 for enzyme embeddings and MolFormer for
molecule embeddings. Rather than fine-tuning these encoders,
adding additional encoders, or incorporating more features
[e.g., extended-connectivity fingerprints (ECFPs)], we de-
signed projection layers for both encoders to refine and align
the embeddings in the same high-dimensional space (Figure
1). Our model outperforms previous approaches with a
simplified architecture and reduced computational demands
during both training and inference phases.

2. METHODS
2.1. Data Set. To ensure a fair comparison with previous

studies, the data sets used in this study were sourced from
existing studies.2,5 Detailed data set construction approach is
available in the study of Kroll et al.2 In brief, the positive
enzyme−substrate pairs were extracted from the Gene
Ontology (GO) annotation database, where entries have
different levels of evidence: experimental, phylogenetically
inferred, computational analysis, author statement, curator
statement, and electronic evidence. The data set construction
was based on experimental evidence and phylogenetic
evidence. For irreversible enzymatic reactions, only reactants
explicitly identified as substrates were included. Substrates that
could not be mapped to identifiers in KEGG, ChEBI, or
PubChem were excluded. To challenge the model to
distinguish true from false substrates, negative pairs were
generated by randomly sampling three small molecules highly
similar to the true substrates for the same enzyme sequences.2

Specifically, the FingerprintsSimilarity function from the
RDKit package was used for the pairwise similarity calculation
among small molecules based on molecular fingerprints.
Random sampling was conducted from the molecules with
similarity scores ranging from 0.7 to 0.95. If eligible molecules
were not enough, the lower bound was reduced in steps of 0.2
until enough small molecules could be sampled.
The experimental evidence-based data set, originally split

into training, validation, and test sets in the original study,2,5

contained 50,093 enzyme−substrate pairs in the training set,
5422 pairs in the validation set, and 13,336 pairs in the test set.
In contrast, the phylogenetic evidence-based data set
comprised a total of 765,635 pairs. These two data sets were
downloaded from https://github.com/AlexanderKroll/ESP
and https://github.com/AlexanderKroll/ProSmith, respec-
tively.
Because of the computational demands of processing long

protein sequences, we excluded some positive or negative
enzyme−substrate pairs whose sequence embeddings exceeded
the hardware capacity (NVIDIA A100 GPU). Specifically, for
ESM-2 models with output dimensions of 480 and 1280,
sequences longer than 8000 nm were removed. Sixteen pairs
were removed from the training data set, and no pair was
removed from the test data set. For the ESM-2 model with a

2560-dimensional output, sequences longer than 5500 were
excluded. Correspondingly, 212 pairs were removed from the
training data set. Notably, no sequence in the validation and
test data sets was removed.
2.2. Calculating Enzyme Representation. In this study,

enzymes were represented numerically using ESM2 mod-
els.28,44 ESM is a PLM project, initiated by Meta Fundamental
AI Research (FAIR) in 2019 (https://github.com/
facebookresearch/esm), which includes 19 pretrained PLMs
with various dimensional output embeddings based on a
modified bidirectional encoder representation from trans-
formers (BERT) architecture. Those PLMs were trained on
large protein sequence data sets (e.g., UR50/D 2021_04)
through self-supervised learning. In this study, we employed
three ESM-2 models, including esm2_t12_35M_UR50D with
35 million parameters and 480-dimensional output,
esm2_t33_650M_UR50D with 650 million parameters and
1280-dimensional output, and esm2_t36_3B_UR50D with 3
billion parameters and 2560-dimensional output, denoted as
ESM-2-35M, ESM-2-650M, and ESM-2-3B, respectively. The
details about each PLM are listed in Supporting Information
Table S1. The amino acid one letter code of each enzyme was
loaded into the PLM for embeddings. For an enzyme with L
amino acids, the output of the ESM-2-650M model for the
enzymes is a (L + 1) × 1280 matrix, where 1280 represents the
output dimension of the ESM-2-650M model. The first row is
the representation of the [sos] token, which is the indicator of
“start of sentence” during the training process. After that, each
row in the matrix represented the corresponding amino acid
from the N-terminus to the C-terminus with the consideration
of the amino acid itself and the context of the entire sequence.
We used an average pooling operation to unify the output
dimensions of enzymes with different lengths. Finally, any
enzyme sequence loaded into the ESM-2-n for embeddings
would result in a 1*n dimensional vector as its representation.
2.3. Calculating Molecule Representation.MoLFormer

was selected for numerical representation generation of
molecules.29 MoLFormer was developed by IBM Research in
2022 and trained on canonical SMILES sequences of 1 billion
molecules from the ZINC database and 111 million molecules
from PubChem with employment of rotary positional
embeddings and a linear attention mechanism. There was
only one model available, called “MoLFormer-XL-both-10pct”
trained with 10% of both data sets, at https://huggingface.co/
ibm/MoLFormer-XL-both-10pct. Although the data set size
was smaller, this model demonstrated performance comparable
to the full-size model. Therefore, we used this model for
molecule embeddings. We will use “MoLFormer” to refer to
this model in this paper. MoLFormer has a BERT-like
architecture similar to that of ESM models. To encode a
canonical SMILES, the SMILES sequence was first converted
into a numerical matrix, and then an average pooling operation
was conducted to unify the feature dimension of SMILES
sequences of different length into a 1 × 768 dimensional
vector.
2.4. Encoding Models. ESM-2 models represent an

upgrade over ESM-1b used in previous studies.2,5 They were
trained on a new data set (UR50/D 2021_04), while the ESM-
1b model was trained on UR50/S 2018_03.28,44 Besides, the
ESM-2 models employed rotary position embedding to replace
the learned position embedding, which allowed it to embed
any length of protein sequences, while ESM-1b can only
embed sequences shorter than 1023 amino acids.28,44 As for
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MoLFormer, it was trained on a larger data set than the one
used in previous study (i.e., ChemBERTa-2) and employed
more advanced algorithms (i.e., rotary position embedding and
linear attention mechanism).5 It exhibited better performance
in one regression task (Lipophilicity data set) and three
classification tasks (BACE, BBBP, and ClinTox data sets)
during downstream task performance evaluation.25,29

2.5. Model Architecture Design. The model architecture
comprised two independent modules with similar inner
architecture design for enzyme sequence input and molecule
SMILES input (Figure 1). The enzyme module utilized an
ESM model as the encoder for enzyme sequence embeddings,
followed by average pooling to unify the embedding
dimensions. These embeddings were then processed through
a projection head to refine the dimension from 480/1280/
2560 to 128. Similarly, the molecule module employed
MoLFormer as the encoder, followed by average pooling and
a projection head to refine the dimension from 768 to 128.
Each enzyme−substrate pair was finally transformed into two
128 dimensional vectors, where one represented the enzymes
and the other represented the molecule. Cosine similarity
between the two refined embeddings was calculated finally as
the interaction portability of the pair. The value of the positive
enzyme−substrate pairs was 1, and the true value of the
negative pair was 0. A MSE loss function was employed for the
loss calculation as follows

n
loss

1
(Sim Label )

i

n

i i
1

2=
=

where n is the number of data points; Simi is the cosine
similarity of the 128-dimensional vectors of enzyme and
substrate in the single pair; and Labeli is the true label.
The projection head mainly referred to the projection heads

in contrastive learning studies with a few modifications.45−47

The two projection heads for enzyme embeddings and
molecular embeddings did not share weights and were trained
simultaneously and independently through the MSE loss
function, except for the second batch norm layer. While the
contrastive learning idea was inspired from CLIP,36 there was
no huge data set available for training, similar to the one that
CLIP used to train the image and text encoders from scratch.
Thus, in this study, we leveraged two pretrained encoders for
embeddings to save the computational resources required for
LLMs’ training and bypass the need for a huge enzyme−
substrate pair data set. At the same time, we employed the
knowledge/expert-based negative data set to address the
challenges of scarcity in negative data points. The encoders
were frozen, and two independent projection heads were
trained jointly as the learnable adaptor to maximize the model
performance.
For each projection head, the number of neurons in the first

fully connected layer corresponded to the encoder’s output
dimension after average pooling. A batch normalization layer
followed the fully connected layer before the ReLU activation
function. Subsequently, the second fully connected layer
(bottleneck layer) projected the input into a 128-dimensional
vector, employing batch normalization and L2 normalization.
The 128 dimension was selected mainly referring to
SimCLR.45 The neurons in the first fully connected layer
varied based on the encoder selected for model development.
For instance, with the optimal combination of ESM-2-3B and
MoLFormer, the first fully connected layers had 2560 and 768

neurons for enzyme and molecule embeddings, respectively.
Following projection into a 128-dimensional vector, both
enzyme and molecule vectors shared the same batch
normalization layer, assuming that they were in the same
high-dimensional space.
2.6. Model Training. To expedite training and reduce

computation needs, enzyme and molecule embeddings were
pregenerated and saved for projection head training, bypassing
the iterative generation of embeddings during the training
process. An Adam optimizer was employed with default
parameters. The batch size was 16 for the training on the
experimental evidence-based data sets and 512 for the training
on the phylogenetic evidence-based data set. A relatively small
batch size for experimental evidence-based data sets resulted
from the small size of the data set and the better capability of
capturing the nuances, while a larger batch size was selected for
the larger phylogenetic evidence-based data set and captured
the general features among positive/negative pairs.
The model trained on the experimental evidence-based data

set, denoted as FusionESP-exp, underwent 500 epochs, with
the best-performing model checkpoint saved based on
validation data set performance. Training typically took 2−3
h using a Tesla T4 GPU on Google Colab. The model trained
on both the phylogenetic and experimental evidence-based
data sets, denoted FusionESP-XL, underwent similar processes,
beginning with training on the phylogenetic evidence-based
data set for 500 epochs, followed by an additional 30 epochs
on the experimental evidence-based data set. The epoch
numbers were selected based on learning curves (Supporting
Information Figure S1). The model, after training on a
phylogenetic evidence-based data set, was noted as FusionESP-
phylo. At each stage, the best model checkpoint was saved
based on validation data set performance during this extended
training process.
2.7. Software. The neural network models were all

implemented with Python and trained using PyTorch library.
The data sets and codes used to generate the results of this
paper are available from https://github.com/dzjxzyd/
FusionESP.
2.8. Web Server. A user-friendly web server was deployed

with Amazon Web Services (AWS) app runner. The Web site
was designed with html and css scripts, and the model
deployment was achieved with Flask (2.2.2). Due to the
constraint of computational resources, FusionESP-XL with
ESM-2-650M and MolFormer was deployed for enzyme−
substrate prediction. The web server supports large-scale
processing, which allows users to upload their peptide
information through xls or xlsx formats. The detailed scripts
for web server development are available at https://github.
com/dzjxzyd/FusionESP_server_1280.

3. RESULTS AND DISCUSSION
3.1. Contrastive Learning Strategy Exhibits Superi-

ority Over Simple Concatenation Strategy. The data set
was divided into training, validation, and test sets as in the
original paper.5 Three different ESM-2 models and MoL-
Former were employed as encoders for enzyme and molecule
representations, respectively. FusionESP-exp was exclusively
trained on the provided experimental evidence-based data sets.
Although our training data set was slightly smaller compared to
those of previous models, all models, including ours, were
evaluated on the same test data set, ensuring a fair final
performance comparison.
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To assess the superiority of our contrastive learning strategy
in enhancing model performance, we also implemented three
counterpart baseline models with the popular concatenation
strategy. We employed a simple two-layer neural network as
the classifier to learn from the training data, the details of
which can be found in our GitHub repository. The results from
all 6 models are shown in Table 1. All of the models based on
our contrastive learning strategy outperformed their counter-
parts, especially for FusionESP-exp with ESM-2-35M and
MoLFormer, where the accuracy was 5.79% higher than that of
the model based on the simple concatenation strategy with
ESM-2-35M and MoLFormer for embeddings. This under-
scores the significant advantage of our proposed contrastive
learning strategy over the widely used concatenation strategy.
Among the baseline models, the embeddings of enzymes and
small molecules were directly concatenated and processed
through fully connected layers. Negative pairs were generated
by randomly selecting three small molecules with a high degree
of similarity to the true substrates of the same enzyme
sequence. Consequently, for a given enzyme, the embeddings
of small molecules in the negative pairs closely resemble those
in the positive pairs. Since the enzyme embeddings remained
identical across the four pairs, the only source of variation in
the concatenated embeddings came from the small molecule
representations. This design introduced a potential issue: the
learnable two-layer neural network could be struggling with
concatenated embeddings with large duplicate portions
between positive and negative pairs, reducing its ability to
effectively distinguish between them. However, our model
architecture mitigated this issue by maintaining separate,
independent projection heads for enzyme and small molecule
embeddings until the final loss calculation. This decoupled
structure ensured that each projection head focused exclusively
on their respective inputs and learned distinct patterns specific
to enzymes and small molecules rather than being influenced
by their combined representations. Under the above circum-
stance, this design amplifies the differences between similar
small molecules during backpropagation, enhancing the
model’s ability to differentiate them effectively.
A frozen BERT-based encoder paired with learnable neural

networks as a projection head and contrastive loss function has
previously shown success in single-modality conditions for EC
number prediction.43 Frozen encoders for embeddings were
also employed for DTI prediction in the study of ConPLex,
where a PLM (ProtBERT) and Morgan fingerprint were used

for protein and small molecule embeddings, respectively, while
the learnable projection layers were shallower than that of
ours.41 Such a model architecture also exhibited promising
performance among public data sets (e.g., DAVIS, BIOSNAP,
and BindingDB) as well as unseen drugs and proteins.41 In this
study, we employed two independent projection heads and an
MSE loss function referring to the CLIP model for multimodal
prediction tasks. The promising results validated our
hypothesis that positive enzyme−substrate pairs tend to be
closer in the high-dimensional space, while negative pairs are
more distant. Moreover, due to the small size of the projection
heads, our approach required a relatively modest data set size,
making it well-suited for biological applications with limited
data availability.
Additionally, a positive correlation between model perform-

ance and the size of the ESM models/output dimensions was
observed in both the contrastive learning and concatenation
strategy groups. This trend aligns with findings from our
previous studies,48 where larger model sizes/output dimen-
sions encoded more information into the embeddings,
resulting in improved overall performance.
3.2. Model Performance Comparison with SOTA

Performance Trained Only on Experimental Evidence-
Based Data Set. The FusionESP-exp models achieved
superior performance compared to existing SOTA models,
with accuracy, area under the curve, and Matthews correlation
coefficient (MCC) ranging from 92.21% to 93.57%, 0.9468 to
0.9594, and 0.7945 to 0.8314, respectively (Table 1). In Kroll
et al.’s study, models combining ESM-1b or fine-tuned ESM-
1b with a pretrained GNN on the same data sets outperformed
models using ESM-1b and traditional ECFPs for enzyme and
substrate representation, which exhibited the superiority of
pretrained model GNN over ECFP-based features.2 The
performance of ESM-1b and GNN model achieved 88.8%
accuracy, which was close to the one (ACC = 87.59%) of the
FusionESP-exp composed of ESM-2-650M and MoLFormer
base models with simple concatenation strategy. The enzyme
encoders in both models had the same model size (650 million
parameters) and output dimension (1280 dimensions), with
some modifications in ESM-2 regarding the training set and
model architecture. As for the molecule encoders, MoLFormer
was pretrained for general molecule representation, while
GNN was pertained on a domain-specific prediction task (i.e.,
production of Michaelis constants KM of enzyme−substrate
pairs), which was closer to our application scenario (i.e.,

Table 1. Performance of Our Model (FusionESP-exp) and the Previous Models Trained on the Experimental Evidence-Based
Data Set Onlya

model strategy
encoder for
enzymes

encoder for
molecules

data set (train, validation,
test)

ACC
(%) AUC MCC

additional
notes

contrastive learning strategy ESM-2-35M MoLFormer 50077, 5422, 13336 92.21 0.9468 0.7945 our model
ESM-2-650M MoLFormer 50077, 5422, 13336 92.94 0.9558 0.8146 our model
ESM-2-3B MoLFormer 49881, 5422, 13336 93.57 0.9594 0.8314 our model

simple concatenation strategy ESM-2-35M MoLFormer 50077, 5422, 13336 86.42 0.9078 0.6420 our baseline
ESM-2-650M MoLFormer 50077, 5422, 13336 87.59 0.9188 0.6755 our baseline
ESM-2-3B MoLFormer 49881, 5422, 13336 89.64 0.9357 0.7272 our baseline

simple concatenation strategy* ESM-1b GNN 50093, 5422, 13336 88.8 0.94 0.72 ESP1

ESM-1bts GNN 50093, 5422, 13336 91.5 0.956 0.78 ESP1
aNote: original training, validation, and test data set sizes are 50093, 5422, and 13336. GNN: graph neural networks. The GNN was pretrained on
predicting the Michaelis constants KM of enzyme−substrate pairs. *Results were retrieved from previous studies by Kroll et al.2 ESM-1bts: it is a
task specific fine-tuned ESM-1b model, where ESM-1b model was fine-tuned on 200634 enzyme substrate pairs with phylogenetically inferred
evidence.
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enzyme−substrate pair prediction).2 Besides, the pretrained
GNN was still learnable during the training task on the
enzyme−substrate pair data set, and additional hyperparameter
optimization for the gradient-boosting classifier was used to
enhance the performance. Those reasons together contributed
to the slightly better performance of the ESM-1b and GNN-
based model over our simple concatenation models (ESM-2-
650M and MoLFormer), though we employed more advanced
encoders for enzymes. When employing the contrastive
learning strategy, FusionESP-exp with ESM-2-650M and
MoLFormer achieved 92.94% accuracy, which was 4.14%
higher than that of the model with ESM-1b and GNN. The
second model from Kroll et al. employed a task specific fine-
tuned ESM-1b model, which was fine-tuned on 200,634
enzyme−substrate pairs with phylogenetically inferred evi-
dence.2 The additional fine-tuning process enhanced the
representation power of ESM-1b and increased the accuracy
from 88.8% to 91.5%. However, compared to our models with
contrastive learning strategy, the performance was inferior to
ours by approximately 0.78−2.26%, where no additional data
set, ESM-1b fine-tuning, and GNN fine-tuning were needed,
highlighting the effectiveness of our proposed architecture for
enzyme−substrate prediction tasks.
3.3. Ablation Study on the Best-Performing Fusio-

nESP Model. To further explore the function of each element
in the projection head, we conducted an ablation study on the
best-performing FusionESP-exp model using ESM-2-3B and
MoLFormer with an accuracy of 93.57% (as discussed in the
previous section). We systematically investigated the effects of
the first dense layer, ReLU activation function, bottleneck layer
dimension, batch normalization layer, L2 normalization layer,
and loss function. The results, summarized in Table 2,
indicated that the removal of the first dense layer or the
replacement of MSE loss function with the entropy-based loss
function led to a substantial decline in performance. Notably,
given the data set’s 1:3 ratio of positive to negative pairs,
models lacking these components exhibited severe training
instability, rendering them effectively untrainable. Additionally,
the bottleneck size and batch normalization layers contributed
marginally to performance improvement, whereas the L2
normalization layer had a negligible impact.
One of the most notable findings was the importance of the

first dense layer, which functioned as an identity mapping

layer, maintaining the same input−output dimensionality for
enzyme and small molecule embeddings. This architectural
choice, originally inspired by SimCLR, is not a simple identity
mapping but rather serves as a mechanism for feature
reweighting, representation learning, and nonlinearity intro-
duction, facilitating a smooth transition before compression in
the subsequent layer.45 Our observation indicated that, unless
the first dense layer was removed, the model can still learned
from the data set, though the performance remained
suboptimal, while the removal of nonlinearity had moderate
impact. Although the second dense layer remains learnable, it
cannot compensate the absence of the first dense layer, even
with modest feature compression, and the absence of the first
dense layer substantially impairs the model’s ability to
effectively adapt to the designated downstream task, high-
lighting its importance in structuring the contrastive
representation space.
The performance based on cross entropy is in expectation.

In the original CLIP architecture, the key idea of contrastive
learning is to maximize the similarity between correct image−
text pairs and minimize the similarity between incorrect pairs,
where the similarity is a continuous value instead of a discrete
label/category.36 Therefore, the introduction of cross entropy
for loss calculation cannot capture the loss very well for model
training and caused poor performance.
3.4. Ablation Study on the Best-Performing Fusio-

nESP Model without Contrastive Learning Strategy. In
the previous section, we systematically examined the role of
each element within the projection head. To further assess the
contribution of the contrastive learning strategy to model
performance, we investigated whether a concatenation-based
approach, employing a similar projection module, could
achieve comparable results. To address this, we designed two
concatenation-based strategies derived from FusionESP. In the
first strategy, embeddings from enzyme (2560-dimensional)
and small molecule (768-dimensional) language models were
directly concatenated and fed into a single projection head
identical to that in FusionESP. The output of the projection
head was then passed through a sigmoid-activated output layer
for cross-entropy loss calculation. In the second strategy,
refined embeddings from two independent projection heads in
FusionESP were concatenated before being fed into either an
output layer or an additional dense layer (third layer)

Table 2. Ablation Study on FusionESP-exp with ESM-2-3B and MoLFormera

bottleneck size first dense layer ReLU batchNorm L2 normalization loss function ACC (%) AUC MCC

32 √ √ √ √ MSE 93.09 0.9541 0.8192
64 √ √ √ √ MSE 93.02 0.9563 0.8177
128 √ √ √ √ MSE 93.57 0.9594 0.8314
256 √ √ √ √ MSE 93.38 0.9574 0.8268
512 √ √ √ √ MSE 93.16 0.9562 0.8218
128 × √ √ √ MSE 74.31 0.8405 0.1310
256 × √ √ √ MSE 73.63 0.6517 N/A
512 × √ √ √ MSE 73.63 0.6517 N/A
128 √ × √ √ MSE 92.21 0.9499 0.7939
128 √ √ × √ MSE 92.01 0.9448 0.7901
128 √ √ √ × MSE 93.42 0.9591 0.8278
128 √ √ × × MSE 91.97 0.9447 0.7888
128 × × √ √ MSE 73.90 0.6867 0.0856
128 √ √ √ √ CE* 74.47 0.8217 0.4467

aNote: MSE: mean square error; CE: cross entropy; N/A: not available. *To calculate the cross entropy, we employed the sigmoid function to get
the probability based on similarity valued and then calculated the cross-entropy loss between the probability and the label.
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preceding the output layer, followed by a sigmoid activation
function for the loss computation.
The results, summarized in Table 3, reveal that the

projection module from SimCLR remains effective, even
outside the contrastive learning context. Specifically, in the
first strategy, concatenating the embeddings before projection
yielded notably better performance than concatenating them
after the two learnable projection heads. Additionally, varying
the output dimension of the first dense layer had only a modest
impact. The original identity mapping design in the first dense
layer (as used in FusionESP’s projection head) achieved the
best performance. Removing the first dense layer or
introducing a third dense layer led to performance degradation,
while in the contrastive learning setting, the model lost the
ability to learn from data. For the second strategy, directly
concatenating the refined 128-dimensional embeddings from
the two independent projection heads before the output layer
severely impaired the model’s learning ability. However,
introducing a third dense layer as an adapter significantly
improved the performance, and its output dimension had
minimal impact on the final performance.
In summary, the projection head design plays a crucial role

in enhancing the prediction performance compared to a simple
multilayer perceptron classifier, as shown in Table 1.
Moreover, the contrastive learning strategy further improved
the model’s predictive capability.
3.5. Training the Model with Including Phylogenetic

Evidence-Based Data Further Enhances Its Perform-
ance. In this section, we further enhanced model performance
by training on a larger data set combining phylogenetic
evidence-based and experimental evidence-based data sets.

Assuming that the phylogenetic evidence-based data set
contained rich relationship information between enzymes
and substrates, we directly trained models on this data set
for 500 epochs, and subsequently, the model underwent
further training on the experimental evidence-based data set
for 30 epochs to optimize performance. Following the
approach from a reference (ref 5, we trained and evaluated
the model performance on the same data sets for fair
performance comparison. The results are shown in Table 4.
Notably, all the models in Table 4 trained on phylogenetic

evidence-based data set only (FusionESP-phylo) outperformed
all the models trained on experimental evidence-based data set
from Table 1 (FusionESP-exp), including models employing
ESM-1b and ChemBERTa-2. The phylogenetic evidence-based
data set contained 764,449 data points, which was around 15
times larger than the experimental evidence-based data set. We
can infer that the number of learnable parameters was not yet
saturated under current data sets and can be expected to
further enhance performance with a larger data set.
Similarly, larger encoder-based models exhibited better

performance, with FusionESP-phylo and FusionESP-XL using
ESM-2-3B, achieving accuracy of 93.98% and 94.77%,
respectively, compared to 93.93% and 94.56% from models
using ESM-2-650M. Besides, improvement was also observed
after the models were further trained on the experimental
evidence-based data set. This is not surprising as the data
points in the training data set from the experimental evidence-
based data set were much closer to the data points in the test
data set, thus allowing the model to perform better in the test
data set. There was also a performance improvement between
the models with ESM-2-650M and MoLFormer and those with

Table 3. Ablation Study on FusionESP-exp (ESM-2-3B and MoLFormer) without Contrastive Learninga

bottleneck size first dense layer size third dense layer ReLU BatchNorm L2 normalization loss function ACC (%) AUC MCC

First Concatenation Strategy
128 × × √ √ √ CE 91.57 0.9546 0.7849
128 3328 × √ √ √ CE 92.23 0.9602 0.7989
128 256 × √ √ √ CE 92.09 0.9583 0.7965
128 128 × √ √ √ CE 92.05 0.9568 0.7955
128 128 128 √ √ √ CE 91.72 0.9585 0.7860

Second Concatenation Strategy
√ √ × √ √ √ CE 73.84 0.5697 0.0757
√ √ 32 √ √ √ CE 91.01 0.9494 0.7690
√ √ 128 √ √ √ CE 90.50 0.9487 0.7588
√ √ 256 √ √ √ CE 90.98 0.9483 0.7689

aNote: CE: cross entropy. First concatenation strategy: concatenate the embeddings from the protein language model and the chemical language
model and load the concatenated embeddings into a single projection head and an output layer subsequently. Second concatenation strategy:
concatenate the two refined embeddings from two independent projection heads for an output layer or third dense layer before the output layer.

Table 4. Performance of Our Models (FusionESP-phylo and FusionESP-XL) and Previous Model Trained on Both
Phylogenetic Evidence-Based and Experimental Evidence-Based Data Sets

encoder for enzymes encoder for molecules ACC (%) AUC MCC additional notes

ESM-2-3B MoLFormer 93.98 0.9567 0.8419 our model (fusionESP-phylo)a

ESM-2-3B MoLFormer 94.77 0.9653 0.8628 our model (fusionESP-XL)b

ESM-2-650M MoLFormer 93.93 0.9534 0.8404 our model (fusionESP-phylo)a

ESM-2-650M MoLFormer 94.56 0.9635 0.8572 our model (fusionESP-XL)b

ESM-1b chemBERTa-2 93.88 0.9517 0.8391 our model (fusionESP-phylo)a

ESM-1b chemBERTa-2 94.3 0.9618 0.8519 our model (fusionESP-XL)b

ESM-1b chemBERTa-2 94.2 0.972 0.85 ProSmith2
aNote: the model (FusionESP-phylo) was trained on the phylogenetic evidence-based data set only. bThe model (FusionESP-XL) was trained on
the phylogenetic evidence-based data set first and continued to be trained on the experimental evidence-based data set, corresponding model.
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ESM-1b and ChemBERTa-2 under the same contrastive
learning strategy. It mainly resulted from the two encoders.
ESM-2-650M and MoLFormer were trained with larger or
updated data sets and advanced architectures (e.g., rotary
position embeddings, linear attention mechanism) and
achieved better performance than that of ESM-1b and
ChemBERTa-2 in downstream prediction tasks.25,28,29 It is
worth noting that ESM-1b can embed enzyme sequences
shorter than 1024 amino acids or truncated enzyme sequences
with the first 1023 amino acids, which caused some
information loss and inferior performance.
3.6. Projection Heads Outperform an Additional

Multimodal BERT. Compared to the previous SOTA model
(ProSmith designed by Kroll et al.), our model trained and
evaluated on the same data sets achieved superior perform-
ance5 (Table 4). In the study of ProSmith, besides employing
ESM1b and ChemBERTa-2 for enzyme and molecule
embeddings, they introduced an additional multimodal
BERT model trained on the combined text of the enzyme
sequence and SMILES. The BERT model was pretrained on
1,039,565 data points from ligand target affinity data set.5

Therefore, ProSmith employed three encoders for embeddings
and connected them with an optimized gradient boost model
for prediction, achieving an accuracy of 94.2%.5 In contrast,
our model (FusionESP-XL) achieved 94.77% accuracy using
only two pretrained encoders without additional pretraining of
a new multimodal BERT model. With our contrastive learning
strategy, FusionESP-XL with ESM-1b and ChemBERTa-2
employed only two encoders, same as that of ProtSmith
without the multimodal BERT, and achieved slightly higher
accuracy.
In order to explore the contribution to the performance of

our proposed architecture, we employed ESM1b and
ChemBERTa-2 for enzyme and molecule embeddings and
trained the model with our architecture, with modifications
according to the input dimensions. The performance was
slightly better than that of ProSmith. Our promising
performance was attributed to our simple projection heads,
effectively fusing embeddings from two encoders for prediction
tasks, marginally superior to the effect of an additional
multimodal BERT encoder and a well-optimized gradient
boost classifier. At the same time, the ESM1b model was based
on learned position embeddings, and it cannot embed the
enzymes whose sequence length is longer than 1023 amino
acids.44 Therefore, those enzyme−substrate pairs whose
sequence length was longer than 1023 were removed. Though
our training data set was smaller than the one used in
ProSmith, our performance was still comparable. Such a
comparison further demonstrated the superiority of our
proposed architecture.
3.7. Evaluating FusionESP-XL Performance in Unseen

Enzymes and Small Molecules. In order to further
characterize the model performance in rarely seen enzymes,
we split the test data set into three subgroups: data points with
enzymes with a maximal sequence identity to training data
between 0 and 40%, between 40% and 60%, and between 60%
and 80% based on CD-HIT.49 The results are presented in
Table 5. It was observed that FusionESP-XL model with ESM-
2-3B and MolFormer achieved higher performance in
enzyme−substrate pairs with higher sequence identity.
Specifically, the accuracy, AUC, and MCC were 96.85%,
0.9871, and 0.9198, respectively for enzymes with 60−80%
sequence identity. The model still performed well for enzymes

with 0−40% sequence identity with an accuracy of 93.07%,
AUC of 0.9476, and MCC of 0.8185. It is worth noting that
our model also exhibited better performance in the three
subsets compared to the performance of ESP by approximately
1.95−4.57% in accuracy.2 Though trained on the same
experimental evidence-based data set, FusionESP-exp with
ESM-2-3B and MolFormer still outperformed the ESP model
across all three sub-data sets. When compared with ProtSmith,
our model (FusionESP-XL with ESM-2-3B and MolFormer)
outperformed in the most challenging sub-data set (0−40%
maximal sequence identity), with the MCC increasing from
0.78 to 0.8185. This model also surpassed ProtSmith in the
40−60% maximal sequence identity sub-data set in terms of
MCC, while the MCC was slightly lower than ProtSmith in the
60−80% maximal sequence identity sub-data set.
Furthermore, we investigated the predictive capabilities of

our models for small molecules with different frequencies in
training data set (Table 6). Similar to that in maximal sequence
identity, FusionESP-XL achieved better performance com-
pared to FusionESP-exp across the 12 sub-data sets. Besides,
the rarely seen small molecules tend to be wrongly predicted
by the model, especially in unseen small molecules with an
ACC of 80.93%. Compared to the performance in unseen
small molecules in ProtSmith (MCC = 0.29) and ESP (MCC
= 0.00), our model (FusionESP-XL with ESM-2-3B and
MolFormer) achieved slightly higher performance with a MCC
of 0.2966. When it came to rarely seen small molecules (only
present once in training data set), our model’s performance
was increased from 80.93 to 92.57%. Compared to ESP (MCC
= 0.28) and ProtSmith (MCC = 0.69), our model achieved
much higher performance (MCC = 0.7654).
The performance of our model in rarely seen and unseen

enzymes and small molecules indicated that our model has
better generalization capability. The projection heads can not
only contribute to the increase in overall performance but also
enable the model to perform well in unseen data points.
To further explore the model performance under different

maximal sequence identity and frequency of small molecules in
training data set, we further explore the model’s performance
under different frequencies of small molecules in each
sequence similarity subgroup (Figure 2). It was observed

Table 5. Performance of FusionESP-XL and FusionESP-exp
with ESM-2-3B and MolFormer in Rarely Seen and Unseen
Enzymesa

maximal sequence identity ACC (%) AUC MCC

FusionESP-XL with ESM-2-3B & MolFormer
0−40% 93.07 0.9476 0.8185
40−60% 96.12 0.9752 0.9001
60−80% 96.85 0.9871 0.9198
FusionESP-exp with ESM-2-3B and MolFormer

0−40% 91.46 0.9334 0.7752
40−60% 95.49 0.9731 0.8842
60−80% 96.31 0.9864 0.9066

ESP*
0−40% 89 0.93 0.72
40−60% 93 0.97 0.83
60−80% 95 0.99 0.88

aNote: the performance of ProSmith was only exhibited in figure
instead of table, and thus we did not have the exact values. *The
performance of ESP model was based on the task-specific fine-tuned
ESM-1b model.
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that within the same maximal sequence identity subgroup,
performance improved as the frequency of small molecules in
the training data set increased. For example, in the 0−40%

maximal sequence identity subgroup, the accuracy increased
from 76.13% for unseen small molecules to 90.72% for those
with a frequency ranging from 1 to 10 and further to 94.26%
for frequencies greater than 10. Similarly, the prediction
performance for unseen and rarely seen small molecules also
improved as the maximal sequence identity increased.
Particularly, the accuracy for those unseen small molecules
was increased from 76.13% with 0−40% maximal sequence
identity to 85.09% for enzymes with 40−60% maximal
sequence identity and 93.07% for enzymes with 60−80%
maximal sequence identity. Predicting enzyme−substrate pairs
was particularly challenging when the enzyme exhibited 0−
40% sequence identity and the small molecule was unseen.
However, when the enzyme had a higher maximal sequence
identity or the small molecules were present in the training
data set, the model was able to make significantly more reliable
predictions.
3.8. FusionESP-XL Models Can Express Uncertainty.

Internally, our model can also provide the cosine similarity
score instead of only the positive or negative prediction results
to interpret how confident the model is regarding its
prediction. In this paper, we set 0.5 as the threshold for
output results, where a cosine similarity score between an
enzyme and a small molecule was predicted as a positive pair if
the score is higher than 0.5, and otherwise, it is a negative pair.
The cosine similarity score can be also provided as output at
our Web server at https://rqkjkgpsyu.us-east-1.awsapprunner.
com/ for single reaction prediction or large-scale prediction.
To provide a more detailed assessment of prediction

accuracies, Figure 3 displays the distributions of true (blue)
and false (orange) predictions within our test data set across
various prediction scores. Most correct predictions had scores
either close to 0 or close to 1, indicating that FusionESP-XL
made predictions with high confidence. In contrast, false
predictions were distributed more evenly across the prediction
score range. The predictions for the data points with scores

Table 6. Performance of FusionESP-XL and FusionESP-exp
with ESM-2-3B and MolFormer in Rarely Seen and Unseen
Small Molecules

number of positive samples with
identical metabolite in the

training set
size of
Subset

ACC
(%) AUC MCC

FusionESP-XL with ESM-2-3B and MolFormer
0 640 80.93 0.6942 0.2966
1 498 92.57 0.9445 0.7654
2 431 93.27 0.8935 0.7880
3 586 96.07 0.9657 0.8758
4 351 95.44 0.9634 0.8631
5 414 93.48 0.9486 0.7976
6 278 94.96 0.9597 0.8547
7 313 94.57 0.9731 0.8460
8 222 92.79 0.9724 0.7938
9 317 94.32 0.9575 0.8471
10 157 96.18% 0.9900 0.8954
>10 8876 95.86 0.9783 0.8995
FusionESP-exp with ESM-2-3B and MolFormer
0 640 76.72 0.6637 0.1343
1 498 87.95 0.8870 0.6198
2 431 88.86 0.8738 0.6503
3 586 93.86 0.9584 0.8080
4 351 92.02 0.9397 0.7660
5 414 92.03 0.9432 0.7504
6 278 92.45 0.9580 0.7833
7 313 94.89 0.9625 0.8543
8 222 91.44 0.9432 0.7512
9 317 94.01 0.9704 0.8371
10 157 95.54 0.9737 0.8775
>10 8876 95.30 0.9733 0.8855

Figure 2. Prediction performance of FusionESP-XL with ESM-2-3B and MolFormer. Note: we divided the test data set into subsets with different
levels of enzyme sequence identity and frequency of small molecules in the training data set. Source data are provided as a Source Data file.
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between 0.4 and 0.6 were more likely to be incorrectly
predicted. Therefore, for practical usage of FusionESP-XL,
input pairs with cosine similarity score within the 0.4 to 0.6
range should be treated as uncertain and used cautiously in
decision making.

4. CONCLUSIONS
Overall, our proposed contrastive learning strategy (Fusio-
nESP) achieved SOTA performance by leveraging two frozen
encoders and two simple projection heads with an MSE loss
function. The best model, FusionESP-XL, which utilized ESM-
2−3B and MoLFormer, achieved SOTA performance with
accuracy, AUC, and MCC of 94.77%, 0.9653, and 0.8628,
respectively. Even under limited data availability (using an
experimental evidence-based data set only), our model
FusionESP-exp with ESM-2-3B and MoLFormer also achieved
SOTA performance with accuracy, AUC, and MCC of 93.57%,
0.9594, and 0.8314, respectively. Furthermore, our models can
handle proteins of any length, unlike ProSmith, which
truncates all enzymes into 1023 amino acids due to constraints
from the ESM-1b models. This truncation can lead to
confusion when two different enzymes share the same first
1023 residues from the N- to C-terminus. Moreover, our
strategy does not require extra pretrained encoders or data sets
for pretraining but exhibited better generalization capability,
whereas ProSmith’s development relied on a highly correlated
data set (ligand-target affinity) to pretrain the multimodal
BERT encoders before applying them to enzyme−substrate
complex embedding. Our model (FusionESP-XL with ESM-2-
3B and MoLFormer) shows great potential for future enzyme−
substrate pair prediction, mapping the reliable relationship
between enzymes and their substrates.
In the detailed ablation studies, the projection head was

found as an effective module in both contrastive learning and
concatenation contexts. Compared with the popular concate-
nation strategy (two neural network layers), the strategy with

our projection head in this study can further enhance the
model’s performance. When combined with a contrastive
learning strategy, independent projection heads exhibited even
better performance. We also found that the completeness of
the projection heads was important to maximize its capacity,
and modifications to the projection head undermined its
performance in both contrastive learning and concatenation
strategies.
The contrastive learning strategy proposed in this study

shows significant potential for other multimodal prediction
tasks. However, it is worth noting that our model was built on
pretrained LLMs and had inherent limitations, for example, the
relatively large computational resources required to generate
embeddings for long protein sequences. Furthermore, the
learning process of FusionESP relies entirely on known
information to map enzymes and small molecules into the
same high-dimensional space. While our model has made
notable progress compared to previous studies, this reliance
may limit its generalizability to unseen data points. As a plug-
and-play module, we believe that FusionESP can be easily
compatible with other encoding approaches for performance
enhancement. Future work will focus on combining FusionESP
with lightweight yet powerful encoding strategies tailored for
molecules and proteins, aiming to enhance efficiency without
compromising performance.

■ ASSOCIATED CONTENT

Data Availability Statement
All source codes used in this publication are freely available for
academic use under an MIT license at https://github.com/
dzjxzyd/FusionESP. The data sets can be download at https://
zenodo.org/records/13891018.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02357.

Figure 3. Prediction scores around 0.5 indicate model uncertainty. Note: stacked histogram bars display the prediction score distributions of true
predictions (blue) and false predictions (red). The inset shows a blow-up of the interval [0.2, 0.8]. Scores are predicted by FusionESP-XL with
ESM-2-3B and MoLFormer.
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