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A B S T R A C T

Osborne fractionation remains a cornerstone in food science for categorizing seed storage proteins (SSPs), yet 
molecular distinctions among the classes remain unclear. This study employs a computational framework inte
grating structural modeling, AI (artificial intelligence)-driven classification, and molecular dynamics (MD) 
simulations to elucidate these underlying physicochemical differences. Using a dataset of 1039 SSPs from 215 
species, sequence and structural-based features were extracted and compared to identify class-specific charac
teristics, such as low hydrophobic patch area of albumins. Machine learning (ML) classifiers, including binary 
support vector machines and graph convolutional networks were trained on these features, achieving validation 
and test accuracies ranging from 96.0 % to 100.0 %. Model interpretations using SHapley Additive exPlanations 
and saliency mapping revealed key distinguishing features between albumin/prolamin and globulin/glutelin, 
respectively. For the albumin and prolamin classes, physicochemical feature comparisons and ML classifiers 
identified factors underlying their solubility differences, such as the low abundance of charged residues in 
prolamins. On the other hand, although certain features, such as mean surface electric potential, distinguished 
globulins from glutelins, no clear association was found between these features and experimental solubility 
trend. Notably, saliency analysis of globulins and glutelins highlighted loop and helical regions outside the 
conserved β-barrel motifs, where compositional differences in glutamic acid, glycine, serine, and glutamine 
residues were observed. MD simulations explored solvent-specific conformational changes in representative 
SSPs, with all-atomic simulations performed on single monomers and coarse-grained simulations conducted with 
multiple monomers. For 2S soy albumin and 19 kDa maize prolamin, distinct hydrogen bonding patterns was 
observed during their adaptations to 70 % ethanol environment, and the expected aggregation tendency was 
reproduced in the multiple-monomer simulation. Taken together with the highlighted features in ML classifi
cation, these results suggest that the experimental solubility of albumins and prolamins can be explained at the 
monomeric level. However, for pea legumin A (globulin) and rice glutelin A1, no clear differences in structural 
and aggregation dynamics were observed, and monomeric properties alone failed to account for their distinct 
solubility. These findings suggest that glutelin insolubility is likely dictated by inter-protein disulfide networks 
rather than intrinsic monomeric characteristics, aligning with previous experimental observations.

1. Introduction

Seed storage proteins (SSPs) are essential for seed development and 
serve as primary dietary protein sources for humans. Broadly, seed 
proteins can be grouped into housekeeping and storage proteins (Zhou 
et al., 2016). Housekeeping proteins function to maintain cellular ac
tivity such as translation or metabolism, while SSPs work as a source of 

nutrition during the early growth of the seed. Between the two, storage 
proteins composites the major portion of the proteins in seeds (Radhika 
& Rao, 2015).

As plant proteins are gaining increasing interests in the food in
dustry, a comprehensive understanding of the structural and molecular 
characteristics of SSPs is crucial not only for elucidating their biological 
roles but also for optimizing protein extraction, processing, and 
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functionality in food applications (Bera et al., 2023). While the tradi
tional solubility-based Osborne classification of SSPs remains widely 
used, the molecular distinctions among these groups are not yet fully 
understood. In fact, the classification of SSPs remains an area with un
resolved complexities and grey areas, where solubility, structure, and 
evolutionary relationships do not always align.

One of the earliest and most widely used classification systems for 
SSPs was introduced by T. B. Osborne in 1924 (Osborne, 1924). 
Employing the classification system from the American committee on 
protein nomenclature, as well as his findings, Osborne suggested cate
gorizing the major types of SSPs into four groups (Shewry & Casey, 
1999) through serial extraction. These fractions included albumins, 
globulins, prolamins, and glutelins based on their solubility in water, 
salt solutions, alcohol, and acid/base, respectively. The four groups 
encompass all storage protein categories operationally defined by the 
Osborne system.

Up to date, this solubility-based classification remains the standard 
in food science and industry due to its practicality and ease of adaptation 
(Boulter & Derbyshire, 2014). However, subsequent biochemical studies 
have revealed its limitations. For instance, equilibrium centrifugation 
and size-exclusion chromatography demonstrated that globulins, 
initially classified as a single group based on salt solubility, comprise of 
two structurally distinct subfamilies of 7 ~ 8S vicilin and 11 ~ 12S 
legumin (Koshiyama, 1972). Similarly, further studies have led to 
multiple classification criteria for prolamins, such as molecular weight 
(e.g., 22 kDa prolamin) (Esen, 1986) or amino acid composition (e.g., 
cysteine-rich and poor prolamins) (Tatham & Shewry, 1995). These 
findings highlight the limitation of solubility-based classification, as it 
fails to capture the structural and functional diversity of SSPs.

With advances in sequencing technologies, researchers introduced 
an alternative classification framework based on evolutionary relation
ships, leading to the recognition of two major superfamilies of SSPs: 
prolamins and cupins. Under this sequence-based method, SSPs are 
grouped according to gene structure, sequence homology, and 
conserved structural motifs (Fukushima, 1991). However, this approach 
does not always align with the distinct functional properties of SSPs. For 
example, some glutelins, such as rice oryzenin, are grouped together 
with globulins within the cupin superfamily (Tan-Wilson & Wilson, 
2012). Similarly, 2S albumins, traditionally classified as water-soluble 
proteins, are now considered members of the prolamin superfamily 
(Mills & Shewry, 2004). These discrepancies highlight a critical limita
tion: evolutionary similarity does not necessarily reflect physicochem
ical similarity (Tan-Wilson & Wilson, 2012), which is often more 
relevant to food processing and protein extraction.

Beyond such classification inconsistencies, practical extraction 
methods also diverge from Osborne-defined boundaries. In industrial 
settings, protein extraction is typically performed using alkaline solu
bilization, enzymatic hydrolysis, or physical disruption methods (e.g., 
high-pressure homogenization), which often co-extract overlapping 
fractions of albumins, globulins, and glutelins. For example, a recent 
study on lentil protein extraction showed that alkaline- and enzyme- 
extracted proteins shared physicochemical and functional properties 
with both albumin- and globulin-rich fractions, indicating a breakdown 
of Osborne boundaries in extraction workflows (Dias et al., 2024). 
Moreover, as food science is shifting toward precision design of plant 
proteins for specific structural and functional roles, the limitations of 
Osborne-based categorization become increasingly evident. For 
example, proteomic profiling of the pea globulin fraction has revealed 
over 200 distinct protein species by 2D-gel electrophoresis (Dziuba 
et al., 2014), underscoring the chemical heterogeneity within a single 
Osborne class. This highlights the inability of conventional solubility- 
based separation to resolve protein subclasses relevant to function
ality. Therefore, while Osborne classification provides a useful concep
tual scaffold, a more physicochemically informed and data-driven 
approach is essential for guiding the functional formulation of plant- 
based food systems.

To address the discrepancies in the Osborne classification system, 
some researchers have turned to machine learning (ML) methods for 
automated protein classification, primarily using sequence-derived 
physicochemical features. For instance, Marla et al. utilized multiple 
properties extracted from the sequences of 170 rice SSPs, including 
isoelectric point and molar extinction coefficients (Marla et al., 2010). 
Employing a neural network to classify them according to the respective 
Osborne classes, the group achieved 95.3 % accuracy for rice SSPs. 
Similarly, Radhika and Rao utilized features such as individual amino 
acid compositions and applied neural network and support vector ma
chine (SVM) to classify storage proteins from five different species: rice, 
wheat, maize, thale cress, and castor bean, with accuracies ranging from 
82.1 % to 98.6 % (Radhika & Rao, 2015). While these studies high
lighted the potential for accurate classification of SSPs based on physi
cochemical properties, they suffered from three major limitations that 
must be addressed for broader applicability. First, they relied exclusively 
on sequence data, overlooking critical structural properties such as 
secondary structure motifs or surface hydrophobicity. Moreover, the 
models were species-specific, limiting generalizability across different 
protein sources. Lastly, the models lacked interpretability, providing 
little or no insight into the molecular determinants of each Osborne 
class.

Over the past five years, the fields of artificial intelligence and 
computational biology have undergone dramatic advancements, leading 
to the adoption of new algorithms and technologies (Kumar & Srivas
tava, 2024). A key aspect of these developments lies in the significant 
refinement of ab-initio protein modeling and explainable machine 
learning models. Specifically, the near-experimental accuracy of the 
AlphaFold series (Jumper et al., 2021) has enabled in-silico studies of 
proteins that could not be crystallized or remained structurally unre
solved, including most SSPs. Moreover, advancements in interpretation 
algorithms, such as SHapley Additive exPlanations (SHAP) (Lundberg & 
Lee, 2017) and saliency mapping, have begun to mitigate the previously 
perceived black-box nature of ML models, providing insight into the key 
features driving model predictions. In this context, earlier models that 
classified SSPs solely based on sequence data are insufficient. More 
modern in-silico techniques could reveal molecular-level differences 
among the four groups, which are critical for understanding SSP func
tionality in food applications.

This study explores the physicochemical characteristics of Osborne 
classes through AI and bioinformatics techniques such as molecular 
dynamics (MD) simulation. More specifically, it aims to integrate 
sequence, structural, and physicochemical information to refine our 
current understanding in SSP classification. The sequence information of 
1039 SSPs from 215 species was collected, and their 3D structures were 
predicted using AlphaFold 3.0. The molecular features, including global 
(entire sequence or protein) and residual descriptors were extracted 
from their sequences and structures. To explore different feature spaces, 
SVM with SHAP was employed to identify global sequence patterns, 
while graph convolutional networks (GCN) with saliency mapping were 
utilized to highlight local structural patterns that differentiate each 
group. Furthermore, to assess whether Osborne classes exhibit distinct, 
solvent-specific physicochemical dynamics, all-atomic (AA) and coarse- 
grained (CG) MD simulations of representative proteins, such as 2S soy 
albumin and 11S pea globulin, were conducted in different solvent en
vironments. By providing an integrative molecular perspective through 
interpretable AI and comprehensive physicochemical analysis, this 
research aims not only to refine our understanding of SSP classification 
but also to enhance its applicability in food processing and functional 
optimization.
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2. Methods

2.1. Dataset

2.1.1. Data acquisition
The protein sequences of SSPs were retrieved from UniProt (The 

UniProt Consortium, 2023) using the keyword KW-0708 (nutrient 
reservoir) along with their Osborne classes (albumin, globulin, prola
min, and glutelin). Additionally, their trivial names were also consid
ered, including napin, conglutin (albumin); glycinin, conglycinin, 
legumin, vicilin, convincilin, cruciferin, phaseolin, edestin (globulin); 
zein, kaffirin, gliadin, hordein, secalin, coixin, avenin (prolamin); ory
zenin, glutenin, hordenin, secalinin, aveninin, and zeinin (glutelin) 
(Day, 2013; Fukushima, 1991). Accordingly, the final query string was: 
“(KW-0708) AND (albumin OR napin OR conglutin) AND NOT (globulin 
OR glycinin OR [trivial names]) ...”

The acquired dataset was then manually curated using several 
filtering criteria to ensure data quality. Proteins labeled as “hypotheti
cal,” “putative,” “-like,” or “uncharacterized” or sequences without 
signal peptide annotation were excluded. These filtering criteria were 
based on Uniprot’s standardized protein annotation guideline: 
(https://www.uniprot.org/help/annotation_guidelines), which follows 
the International Protein Nomenclature Guideline. According to these 
standards, descriptors such as “putative,” “hypothetical,” “-like,” and 
“uncharacterized” denote functional ambiguity and are typically used 
only when no definitive functional assignment is possible. In this 
context, the proteins carrying these terms were excluded to ensure 
annotation reliability. In addition, proteins labeled “recombinant” were 
excluded to focus on native forms of SSPs. Proteins lacking annotated 
signal peptides, residue information, or named “precursor” were also 
removed, as the study targeted mature protein structures following 
signal sequence cleavage. No subjective filtering was done outside these 
criteria.

After applying these filtering steps, the final dataset comprised 1039 
sequences from 215 different source organisms, including both manu
ally reviewed and automatically annotated sequences to preserve data
set diversity. Using this filtered dataset, AlphaFold 3.0 (Abramson et al., 
2024) was employed for ab-initio modeling of 3D protein structures, 
where signal peptides were removed prior to modeling. For each pro
tein, five models were generated, and the structure with the highest 
overall predicted local distance difference test (PLDDT) score, a confi
dence metric indicating prediction reliability (Jumper et al., 2021), was 
selected to ensure the most reliable structural prediction. To provide 
confidence level in the predicted protein structures, all structures were 
colored based on their PLDDT score and deposited in https://github. 
com/john94kwon/Osborne-class-classification.

2.1.2. Data structure
While the above method enabled the collection of sequences and 

structures of SSPs, additional post-processing was necessary to resolve 
classification ambiguities between globulin and glutelin classes. Spe
cifically, certain protein entries were annotated generically as “cupin 
type-1 domain-containing protein,” making it unclear whether they 
belonged to globulin or glutelin, as both classes contain the cupin 
domain. For instance, the UniProt entry A0A0E0M7E8 (from rice, 56.32 
kDa) was labeled as such, leading to ambiguity in classification. Given 
that rice glutelin constitutes 70–80 % of the total rice protein (Katsube- 
Tanaka et al., 2004) and that the protein bands of approximately 50 kDa 
are absent from SDS-PAGE gels of rice globulin fractions (Kim & Jeong, 
2002), it is likely that the protein belongs to glutelin class. To address 
this inconsistency, based on established domain knowledge that glu
telins are mainly from grass family such as wheat, barley, rice, or rye 
(Shewry et al., 1995), the cupin domain-containing proteins were an
notated as glutelin if their source was from grass family. The family of 
the source organism was identified using USDA database of plant fam
ilies (https://plants.usda.gov/). The summary of the source variation, 

number of species, and the total counts of data per each Osborne class is 
listed as Table 1.

2.2. Statistical testing

Statistical analyses were performed using a one-way analysis of 
variance (ANOVA) model implemented in Python 3.10 with the scikit- 
learn package (version 1.3.0) (Buitinck et al., 2013). ANOVA residuals 
were checked for normality using Shapiro-Wilk test. Bonferroni multi
plicity adjustment was applied when comparing the 38 extracted 
physicochemical features among the four groups, with adjusted p-values 
<0.05 considered statistically significant. If the normality of residuals 
assumption for ANOVA was not satisfied, the non-parametric Kruskal- 
Wallis test was used instead. Probability values of p < 0.05 (2-tailed) 
were considered statistically significant for all comparisons. For features 
that passed the residual normality test, results are presented as mean ±
standard deviation. For non-normally distributed data, results are pre
sented as median with interquartile range (IQR).

2.3. Multivariate analysis

Multivariate analysis was conducted following MinMax scaling to 
normalize feature distributions across variables. Principal component 
analysis (PCA) was performed to reduce dimensionality while retaining 
the majority of variance in the data. In addition, linear discriminant 
analysis (LDA) was employed to maximize class separability, leveraging 
class labels to extract the most discriminative components. To further 
explore feature correlations and their contributions to classification, 
partial least squares discriminant analysis (PLS-DA) was applied, 
capturing both variance within predictors and their relationship to the 
response variable. All analysis and relevant visualization were con
ducted with Python 3.10 with sklearn library.

2.4. Machine learning classification of proteins

Machine learning models were utilized to categorize seed storage 
proteins based on their Osborne classification. For global feature-based 
classification, SVM was selected as it achieved the highest interpretation 
stability and performance among commonly used tabular classifiers. 
This point is further discussed in the later section (Section 3.2.2). For 
residue-level classification, GCN was implemented, as it effectively 
captures local structural patterns within protein structure. GCN model 
was developed using the PyTorch library (ver 2.6.0) (Paszke et al., 
2019). To ensure an even class distribution, the dataset was split into 
training and testing sets using stratified train_test_split() from scikit- 
learn (80:20 ratio). MinMax Scaling was applied for global features 
(SVM), and standard scaling was used for residue-level features (GCN). 
To enhance model generalizability and prevent overfitting, 5-fold 
stratified cross-validation was performed during hyperparameter 

Table 1 
Summary of collected seed storage protein data (215 species and 1039 proteins) 
organized by Osborne classification.

Class Source (number of data) Species Counts

Albumin
Field mustard (24), Ethiopian mustard (12), 
Rapeseed (12), False flax (10), Mouse-ear cress 
(9), Wild cabbage (8), Radish (8)…

77 250

Globulin
Garden pea (42), Rapeseed (24), Field mustard 
(17), Soybean (14), False flax (12), Wild soy (10), 
Peanut (10), Lupine (10)…

112 336

Prolamin
Maize (106), Wheat (46), Sorghum (30), Hall’s 
panicgrass (24), Job’s tear (23), Foxtail millet (7), 
Goatgrass (7), Sugarcane (6)…

27 294

Glutelin
Japonica rice (35), Red rice (11), Malo sina (10), 
African rice (10), Indica rice (10), Oryza 
glumaepatula (6), Oryza barthii (6)…

32 159
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optimization.

2.4.1. Global (sequence + structural) feature extraction
Feature extraction was performed on both sequence-based and 

structure-based properties. Biopython (ver 1.81) (Cock et al., 2009) was 
used to extract sequence-based features, including molecular weight, 
aromaticity, instability index, hydrophobic index, aliphatic index, ab
solute charge per residue, and hydrophilic index. For structure-based 
features, Quilt (ver 1.3) (Lijnzaad et al., 1996) and ChimeraX (ver 
1.6.1) (Meng et al., 2023) were employed. Quilt was used to compute 
hydrophobic patch area, hydrophilic surface area, and the hydrophobic 
surface ratio, while ChimeraX provided additional structural de
scriptors, such as mean lipophilicity potential, mean Coulombic poten
tial, total surface area, molecular volume, solvent-accessible surface 
area (SASA), number of hydrogen bonds, helix/coil/strand propensities, 
and the number of favorable contacts. To ensure structural consistency, 
all PDB structures were converted to PQR format using the pdb2pqr 
plugin (ver 3.6.1) (Dolinsky et al., 2004) under the CHARMM force field 
at pH 7.0. The number of disulfide linkages was determined by identi
fying cysteine pairs within a 2.0 Å threshold. It should be clarified that 
disulfide linkage refers to covalent bonds between cysteine residues 
within a single polypeptide (intra-protein), while disulfide network 
denotes higher-order crosslinking involving multiple polypeptides 
(inter-protein). The methodology and codes to extract these features, 
including sequence descriptors and structure-based parameters, were 
adapted from our previous work (Kwon et al., 2024).

2.4.2. Residue-level feature extraction
To explore fine-grained structural differences, GCN models were 

trained using residue-based node features: BLOSUM62 matrix (Henikoff 
& Henikoff, 1992), AAPHY7 (seven physicochemical properties of 
amino acids) (Meiler et al., 2001), and alpha carbon XYZ coordinates, 
combined with protein contact maps(Fig. 1). Prior to coordinate 
extraction, all protein structures were centered at the origin using VMD 
(version 1.9.4) (Humphrey et al., 1996). Graph-based neural networks 
utilize nodes (vertices), which represent individual elements in a graph, 
and edge, which defines the relationship or connection between each 
node. For the scope of this study, nodes represented each amino acid 
residue of the protein, and the three node features defined the 

characteristics of the nodes. Protein contact maps, constructed using a 
12.0 Å threshold for alpha carbon distances, formed the edge matrix.

2.4.3. GCN architecture
All the contact maps and residue embeddings of a protein with L 

length were padded with P zeros to match the longest sequence in the 
dataset (L + P). During backpropagation, these padded nodes were 
ignored, ensuring they had no effect on the gradients (Gama et al., 
2018). Additionally, the corresponding edge matrix entries were also set 
to zero, ensuring that artificially added nodes did not introduce spurious 
connections. This padding operation ensured that graphs of different 
proteins had a uniform shape, reducing the influence of variable edge 
structures, and making node-based features more comparable across 
proteins. The output dimension of GCN model was 32 resulting in a 
node-wise vector of size [(L + P) × 32] after feature aggregation through 
the GCN layers. With the node-wise vector, self-attention pooling 
mechanism developed by Lin et al. (Lin et al., 2017) was employed with 
4 attention heads, further aggregating the vector by scoring the impor
tance of individual nodes (residues) compared to other nodes, thereby 
producing a [1 × 4] vector (Fig. 1). This aggregated vector then passed 
through the output layer, where the final classification was performed 
using BCEWithLogitsLoss function, which inherently incorporates a 
sigmoid activation. More detailed mathematical formulation of the GCN 
architecture can be found in our previous work (Kwon et al., 2024). All 
sequence, structure, extracted features, and relevant scripts were 
deposited in the same Github link.

2.5. Molecular dynamics simulation

Four manually reviewed proteins, selected for their structural and 
functional relevance in food and industrial applications, were chosen to 
represent each Osborne class: 2S albumin from soy (P19594), pea 11S 
legumin A (P02857), 19 kDa maize zein (P06678), and rice (japonica) 
glutelin A1 (P07728). Proteolytic cleavage sites, such as residue 306 of 
glutelin A1 that naturally split the protein into two chains, were re
flected by removing the annotated covalent bond, while leaving the N- 
and C-terminal residues in their default charged states. All disulfide 
linkages were assigned based on post-translational modification data 
from UniProt.

Fig. 1. Graphical representation of protein structure embedding and architecture of the GCN model.
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The protonation states of the residues were predicted based on their 
isoelectric points. This choice was motivated by the unconventional 
environments in our simulations, such as 70 % ethanol and 1 M NaCl. 
Structure-based pKa tools such as PROPKA (Olsson et al., 2011) and 
H++ (Anandakrishnan et al., 2012) are not designed to handle such 
non-aqueous or high-salt conditions, and their assumptions (e.g., 
dielectric constant, implicit solvent, static conformation) do not hold for 
modeling such systems. Specifically, PROPKA uses experimental pKa 
and H++ employs electrostatic potential model (Poisson-Boltzmann), 
making both models highly specific to aqueous condition. Therefore, we 
selected a standard pKa-based protonation scheme as the most universal 
and interpretable approach for protonation state assignments. pdb2gmx 
module in GROMACS was used to assign protonation states.

Molecular dynamics simulations were performed using GROMACS 
2021.5 (Abraham et al., 2015). All simulated systems underwent charge 
neutralization, steepest descent energy minimization in vacuum and 
solvent, followed by extensive NVT and NPT equilibration before pro
duction runs. Simulation setup was described with technical details 
below, in line with established modeling practices (e.g. Wang et al., 
2025).

2.5.1. All atomic MD simulation
The prepared protein structures were placed in a cubic simulation 

box with a minimum distance of 1.2 nm between the protein and the box 
boundaries. Initial energy minimization in vacuum was performed 
under the CHARMM36 force field (Huang & MacKerell Jr., 2013) using 
the steepest descent algorithm for 5000 steps, employing a Verlet cutoff 
scheme with 1.2 nm cutoffs for both Coulombic and van der Waals in
teractions. These cutoff values were used consistently in all subsequent 
simulations. Afterward, the system was solvated with TIP3P water using 
the gmx_solvate module, and counterions were added to neutralize the 
net charge using the gmx_genion module. A second round of energy 
minimization was then conducted on the solvated system using the same 
parameters to remove unfavorable contacts between protein, solvent, 
and ions. For solvated simulations, LINCS algorithm (Hess et al., 1997) 
was applied to constrain hydrogen bonds, Particle mesh Ewald algo
rithm (Darden et al., 1993) was used for electrostatics, and force- 
switching was applied to van der Waals interactions.

NVT equilibration was then carried out at 300 K using the Nose- 
Hoover thermostat (Evans & Holian, 1985), with separate coupling 
groups assigned to protein and solvent (temperature coupling constant 
= 1.0 ps) with a time step of 1.0 fs over 125.0 ps. This was followed by 
125.0 ps NPT equilibration using the same thermostat and Parrinello- 
Rahman barostat (Parrinello & Rahman, 1981) at 1.0 bar, with a 
compressibility of 4.5 × 10− 5 bar− 1 and a 5.0 ps pressure coupling 
constant. The protein structure was position-restrained with restraint 
strength of 1000 kJ/mol/nm2 for both equilibration steps. The pro
duction run was conducted for 200.0–400.0 ns using a 2.0 fs time step, 
depending on the root mean square deviation (RMSD) convergence, 
maintaining the same thermostat and barostat settings as the NPT 
equilibration.

2.5.2. Coarse-grained MD simulation
A set of CG-MD simulations was conducted using the Martini 3.0 

force field (Souza et al., 2021) to explore large-scale conformational 
dynamics and protein-protein interactions over an extended timescale. 
The CG representation of the proteins was generated using the marti
nize2 Python library (Kroon et al., 2022). Backbone-based elastic 
network models were constructed with a force constant of 700.0 kJ/ 
mol/nm2, and secondary structure was assigned using DSSP (Kabsch & 
Sander, 1983). Five monomers of prepared protein were randomly 
inserted into the simulation box using gmx_insert function, ensuring an 
approximate 1 % protein concentration while maintaining a minimum 
inter-protein distance of 2.0 nm to prevent initial steric clashes. The 
system was initially minimized in vacuum with a steepest descent 
integrator for 10,000 steps. Electrostatic interactions were treated using 

a reaction-field scheme (ε_r = 15, r_cutoff = 1.1 nm), and van der Waals 
interactions were shifted to zero at 1.1 nm using the Verlet cutoff 
scheme. These cutoff distances were retained throughout subsequent 
simulations.

The minimized system was then solvated with standard Martini 
water beads (W) and neutralized with gmx_insert function. The box size 
was determined based on the molar ratio between water and protein, 
using the Martini model’s 4:1 mapping of water molecules per W bead. 
In ethanol simulations, the standard Martini ethanol bead (SP1) was 
found to be overly hydrophilic (octanol-water transfer free energy =
− 5.23 kcal/mol) compared to the experimental value (− 1.76 kcal/mol) 
(Souza et al., 2021). To better approximate ethanol’s hydrophobicity, 
the 1-propanol bead (N6) was used instead, as it shares a similar mo
lecular structure and exhibits transfer free energy of − 1.95 kcal/mol 
(Souza et al., 2021), closely matching the experimental ethanol value.

After solvation, a second round of energy minimization was per
formed using the same settings as in vacuum. The LINCS algorithm was 
applied to constrain bond lengths in the system. NVT equilibration was 
conducted using the velocity-rescaling thermostat at 300 K with a 1.0 ps 
coupling constant for 50.0 ns (Δt = 20.0 fs). This was followed by NPT 
equilibration using the Parrinello–Rahman barostat (τ_p = 5.0 ps, 
compressibility = 4.5 × 10− 5 bar− 1) for another 50.0 ns. During equil
ibration, position restraints were applied to the protein heavy atoms 
with a force constant of 4000 kJ/mol/nm2. The production run was 
conducted without restraints and continued until notable aggregation 
was observed in at least one solvent system (1.0–4.0 μs), using the same 
simulation parameters as the NPT equilibration phase without position 
restraints.

3. Results and discussion

3.1. Protein characterization

3.1.1. Comparative analysis of 38 physicochemical properties
To highlight differences among the four Osborne classes, 38 physi

cochemical properties were compared (Table S1). Among the features, 
only the turn-forming residue fraction met the residual normality cri
terion. Therefore, a non-parametric Kruskal-Wallis test was employed 
for the remaining features. The non-parametric analysis identified key 
distinguishing features among the classes, such as the highest ratio of 
methionine (rM) in albumins (2.400, 1.344) (median, IQR) or leucine 
(rL) in prolamins (16.000, 10.036). However, in some cases, small nu
merical differences reached statistical significance. For example, albu
mins and glutelins exhibited no meaningful difference in relative 
hydrophobic area (0.543, 0.049 and 0.549, 0.015, respectively). This 
might be attributed to the increased sensitivity of statistical tests in large 
datasets (Sullivan & Feinn, 2012). While statistically significant, these 
differences were likely not biologically meaningful, as the absolute 
differences were minimal. Therefore, only notably distinctive features 
that uniquely defined each class (i.e., those with no IQR overlap across 
the four classes) were provided in Table 2a. For instance, cysteine 
content (rC) in albumins was classified as a meaningful feature, as its 
distribution was entirely separated from that of other classes (Table 2a). 
In contrast, leucine content, although statistically different, had over
lapping IQRs and was therefore not considered biologically distinctive 
(Table S1).

Table 2a lists the eight most distinctive features observed among the 
extracted properties. Albumins were characterized by their high rC 
(5.594 %), disulfide linkage counts (4.000), along with low hydrophobic 
patch area (5.689 nm2). These values aligned with previous reports on 
the high amount of cysteine residues in 2S albumins and their canonical 
disulfide bonding patterns (Clement et al., 2005; Shewry et al., 2002). 
Prolamins, in contrast, were distinguished by their notably low hydro
philic index (− 0.635 a.u.) and reduced proportions of rR (Arg) (1.361 
%), rD (Asp) (0.357 %), rE (Glu) (0.670 %), rG (Gly) (1.653 %), and rK 
(Lys) (0.000 %). The relatively small number of the charged residues 
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(Grumezescu & Holban, 2018), as well as high contents of hydrophobic 
residues (Xing et al., 2023) (Table S1), such as alanine or valine, were 
consistent with the previous reports.

On the other hand, globulins and glutelins lacked uniquely dis
tinguishing features (i.e., no IQR overlap) that set them apart from the 
other classes. Instead, they exhibited a similar range of values across 

multiple properties, including molecular weight (53.382 vs 53.668 kDa) 
(globulin vs glutelin), solvent-accessible surface area (29.917 vs. 29.281 
nm2), and rI (Ile) (4.762 vs 4.873 %) (Table S1). However, some features 
displayed notable differences between the two SSP groups. For instance, 
globulins exhibited higher rE (8.924 % vs 5.732 %) but lower aroma
ticity (7.425 vs 8.956), rY (Tyr) (2.434 vs 3.619 %), and predicted 

Table 2 
Key physicochemical properties distinguishing Osborne protein classes (a), including features with notable differences between globulin and glutelin (b). Values are 
expressed as mean ± standard deviation and median with interquartile range. Medians with different superscript letters indicate statistically significant differences (p 
< 0.05).

(a)

Distinctive features (no interquartile range (IQR) overlap across the four classes)

Class rC 
(%)

Disulfide linkage count Hydrophobic 
patch area (nm2)

Hydrophilic 
index 
(a.u.)

rR 
(%)

rD 
(%)

rE 
(%)

rK 
(%)

Albumin
5.838 ±1.236/ 
(5.594, 
1.627a)

4.196±1.510/ 
(4.000, 
0.000a)

5.918±1.599/ 
(5.689, 
1.654b)

0.232±0.173/ 
(0.203, 
0.253a)

7.719±3.383/ 
(6.711, 
4.464a)

4.689±1.531/ 
(4.576, 
1.341a)

7.913±2.836/ 
(7.000, 
3.735a)

4.192±2.251/ 
(4.505, 
3.388a)

Globulin
0.945±0.608/ 
(1.040, 
0.558c)

1.642±1.280/ 
(2.000, 
1.000b)

16.941±3.478/ 
(16.043, 
3.658a)

0.224±0.223/ 
(0.227, 
0.350a)

8.031±2.529/ 
(7.551, 
3.983a)

4.327±0.866/ 
(4.329, 
1.091a)

8.987±3.290/ 
(8.924, 
4.356a)

3.864±2.030/ 
(3.178, 
2.713a)

Prolamin
1.408±1.213/ 
(0.939, 
2.084c)

1.044±1.575/ 
(0.000, 
2.000c)

15.591±3.576/ 
(16.684, 
4.878a)

¡0.556±0.162/ 
(¡0.635, 
0.318c)

1.460±0.836/ 
(1.361, 
0.808b)

0.398±0.533/ 
(0.357, 
0.649c)

0.735±0.677/ 
(0.670, 
0.410c)

0.246±0.473/ 
(0.000, 
0.404b)

Glutelin
1.297±0.337/ 
(1.261, 
0.602b)

1.956±0.235/ 
(2.000, 
0.000b)

16.760±2.073/ 
(16.453, 
0.897a)

− 0.004±0.077/ 
(− 0.015, 
0.048b)

7.504±1.293/ 
(7.361, 
1.089a)

3.243±0.825/ 
(3.158, 
1.151b)

5.945±1.051/ 
(5.732, 
0.684b)

3.078±0.598/ 
(3.104, 
0.728a)

(b)

Features with notable difference between globulin and glutelin

Class rE 
(%)

rY 
(%)

Aromaticity 
(a.u.)

Predicted 
isoelectric point

Albumin
7.913 ± 2.836/ 
(7.000, 3.735a)

2.523 ± 1.193/ 
(2.210, 1.235c)

6.447 ± 2.241/ 
(6.708, 2.319c)

6.480 ± 1.100/ 
(6.391, 1.116c)

Globulin
8.987 ± 3.290/ 
(8.924, 4.356a)

2.552 ± 0.656/ 
(2.434, 0.797c)

7.433 ± 0.979/ 
(7.425, 1.126b)

6.346 ± 1.020/ 
(6.067, 1.402c)

Prolamin 0.735 ± 0.677/ 
(0.670, 0.410c)

2.844 ± 1.365/ 
(3.077, 1.632b)

8.026 ± 2.030/ 
(7.377, 2.369b)

7.933 ± 0.846/ 
(8.089, 0.825b)

Glutelin 5.945 ± 1.051/ 
(5.732, 0.684b)

3.461 ± 0.556/ 
(3.619, 0.662a)

9.098 ± 0.916/ 
(8.956, 1.263a)

8.674 ± 1.040/ 
(9.090, 0.546a)

Fig. 2. Projection of seed storage proteins by Osborne classification using principal component analysis (PCA), linear discriminant analysis (LDA), and partial least 
squares discriminant analysis (PLS-DA).
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isoelectric point (6.067 vs 9.090) relative to glutelin (Table 2b).

3.1.2. Multivariate analysis of physicochemical features
Although certain individual features exhibited class-specificity, a 

single feature alone might be insufficient to robustly distinguish the four 
classes, especially between globulin and glutelin. To address this, mul
tiple projection methods: principal component analysis (PCA), linear 
discriminant analysis (LDA), and partial least squares discriminant 
analysis (PLS-DA), were applied to extract and visualize the most 
informative feature combinations (Fig. 2). As presented in the figure, all 
three methods effectively distinguished albumins and prolamins, but 
globulins and glutelins displayed substantial overlaps across all the 
projection methods. This similarity between globulins and glutelins was 
expected, given their well-known sequence homology. For instance, rice 
glutelin shares 34 % sequence identity with chickpea legumin by 
sequence alignment (Chang & Alli, 2012), and 70 % identity with 12S 
oat globulin (Shotwell et al., 1990), surpassing the threshold for ho
mologous proteins (25 %) (Rost, 1999). The reported cross-reactivity 
between 12S oat globulin antibodies and rice glutelin, further supports 
their molecular resemblance (Robert et al., 1985). Additionally, it is 
believed that rice glutelin originated from the identical ancestral gene to 
11S globulins (Furuta et al., 1986; Krishnan & Okita, 1986). The simi
larity of the extracted feature (Table S1) also aligned with this idea. 
Across all three projection methods, manually reviewed and automati
cally annotated (unreviewed) entries were similarly positioned within 
each class across all projection methods, demonstrating that both data 
contributed consistently to the classification patterns.

Among the three techniques, LDA provided the clearest boundaries 
between albumin, prolamin, and the globulin/glutelin group. To further 
interpret these boundaries, the two LDA axes were decomposed, with 
the explained variance ratio of 77.26 % and 20.05 % for axis 1 and 2, 
respectively. LDA axis decomposition revealed that SASA, molecular 
weight, and hydrophobic patch area were the primary determinants of 
class separation along both axes (Fig. S1). The prominence of these 
contributors was consistent with the feature distributions in Table S1, as 
these features exhibited strong differences among the three groups. The 
clear boundaries of LDA suggested that simple and linear techniques 
could be sufficient for broad classification across albumin, prolamin, 
and globulin/glutelin.

3.2. Machine learning classification and interpretation of the model

3.2.1. Classification using global features: SHAP analysis & interpretability
As demonstrated in Fig. 2, albumins, prolamins, and the globulin/ 

glutelin group could be effectively distinguished using simple linear 
classification methods, without requiring complex non-linear models for 
multiclassification. Instead, binary classification could provide a more 
in-depth interpretation by focusing on the differences between two 
groups without diluting information. Therefore, two binary SVM clas
sifiers were trained to differentiate between albumin/prolamin and 
globulin/glutelin. The models achieved high accuracy: 0.995/0.995/ 
1.000 (training/cross-validation/testing) for albumin/prolamin and 
0.987/0.972/0.960 for globulin/glutelin. Additional evaluation metrics, 
such as precision and recall, are provided in Table S2.

To justify the selection of SVM over alternative classifiers, multiple 
models were tested on the binary classification tasks using consistent 
validation protocols. Since SVM achieved near-perfect accuracy in dis
tinguishing albumins from prolamins, it was evaluated on the more 
challenging globulin/glutelin dataset. To this end, five commonly used 
tabular classifiers—SVM, decision tree (DT), random forest (RF), k- 
nearest neighbors (KNN), and multilayer perceptron (MLP)—were 
compared using a consistent random seed and 5-fold stratified cross- 
validation for hyperparameter tuning. Each model was then retrained 
with five different random seeds to assess generalization stability. Per
formance metrics and the consistency of the top five SHAP features were 
evaluated using Jaccard similarity (Jaccard, 1901). As shown in 

Tables S3 and S4, SVM outperformed the other models in both predictive 
performance and interpretive stability and was therefore selected for 
further analysis.

To better understand how the models differentiated between groups, 
SHAP analysis was applied to quantify the contributions of the features 
in classification (Fig. 3). Briefly, SHAP assigns each feature a numerical 
score that reflects its influence on the model’s prediction. By summing 
these scores across proteins, it can identify which physicochemical traits 
most strongly drive the model’s decision. In a SHAP scatter plot, feature 
values are color-coded from blue (low values) to red (high values). SHAP 
values closer to zero indicate minimal influence, whereas more negative 
or positive values reflect stronger associations with a specific class. 
Negative SHAP values correspond to class 0 (albumin and glutelin), 
while positive values indicate class 1 (prolamin and globulin). SHAP 
values revealed that the most significant contributors for distinguishing 
albumin from prolamin were hydrophilic index, rK, rD, rE, and hydro
phobic patch area. Higher hydrophilicity, rK, rD, and rE increased the 
likelihood of albumin classification, whereas a larger hydrophobic area 
was more indicative of prolamins. For globulin/glutelin, key contribu
tors included mean Coulombic potential, predicted isoelectric point, 
hydrophobic index, rW (Trp), and rS (Ser). Among these features, higher 
mean Coulombic potential, predicted PI, hydrophobic index and rS 
favored glutelin classification. Conversely, higher rW was associated 
with globulin predictions.

While the top contributors to binary classification were identified, it 
would be important to connect these features with the expected solu
bility differences among the groups. Based on previous studies, two of 
the key factors affecting protein solubility in aqueous solutions are 
surface charge and the balance between hydrophilicity and hydropho
bicity (Trevino et al., 2008; Van Oss, 1997). Briefly, proteins with higher 
net surface charge tend to be more soluble in water, as charged residues 
form strong charge-dipole interaction with water molecules, stabilizing 
protein in solution. Conversely, hydrophobic residues assume low af
finity for water, and the hydrophobic patches on the surface could drive 
self-association to minimize exposure to water, leading to aggregation 
and even precipitation. In this context, the distinguishing features for 
albumin and prolamin aligned with their known solubility behavior in 
water and alcohol solutions. A lower abundance of charged residues (K, 
D, E) of prolamins would reduce its hydrophilicity and decrease charge- 
charge repulsion between them, promoting aggregation. Additionally, 
the significantly more hydrophobic nature of prolamins (lower relative 
hydrophilic index and higher hydrophobic patch area ratio) would 
promote hydrophobic interactions, which would also lead to self- 
aggregation in polar aqueous environments.

Although these charge and hydrophobicity-based trends aligned well 
with albumin and prolamin solubility, the case for globulin and glutelin 
was less straightforward. Although mean Coulombic potential was 
identified as a distinguishing feature between globulin and glutelin, it 
did not fully explain their solubility differences. The median Coulombic 
potential values were − 0.740 for globulin and 1.350 for glutelin, sug
gesting that glutelin carried more positive surface charges. However, the 
total charge magnitude, considering both positive and negative charges, 
was comparable between the two. If charge-charge screening by salt had 
been the primary driver of solubility, it would stabilize both positive and 
negative charges, making it difficult to argue that this alone explained 
why globulin was salt-soluble while glutelin was acid/alkali-soluble. 
Similarly, the second top contributor isoelectric point (pI), did not 
fully clarify the solubility difference. The median predicted isoelectric 
points of globulin and glutelin were 6.067 and 9.090, respectively. If 
charge repulsion (due to deprotonation of positively charged residues) 
were the primary driver of glutelin’s alkaline solubility, a more negative 
charge would be expected under mildly alkaline conditions. However, 
its significantly higher value suggested that it would remain relatively 
neutral or even positively charged in such conditions, making simple 
charge-based repulsion an unlikely explanation. Furthermore, rS and 
rW, while identified as key features, would not have direct contributions 

H. Kwon et al.                                                                                                                                                                                                                                   Food Research International 221 (2025) 117322 

7 



to salt or alkaline solubility mechanisms, as they are not protonatable. 
Taken together, these findings suggested that the information obtained 
here was insufficient to fully explain the solubility differences between 
globulin and glutelin. Other factors, such as structural dynamics, hy
dration effects, or intermolecular interactions, might play a more sig
nificant role, which will be discussed in the following sessions.

3.2.2. Residue-level classification via GCN: Saliency mapping & 
interpretability

While global feature-based classification identified key distinguish
ing features, relying solely on global properties might limit the ability to 
investigate local structural variations, hindering deeper insights. 
Therefore, to explore more fine-grained structural differences, GCN 
models were trained, achieving accuracies of 1.000/1.000/1.000 
(training/cross-validation/testing) for albumin/prolamin and 0.974/ 
0.987/0.968 for globulin/glutelin. GCN model also yielded high average 
accuracy of 0.971 ± 0.009 across different random seeds (Table S3 and 
S4).

To identify the most important residues for classification, saliency 
scores were computed on the testing set. These scores quantify the in
fluence of each input feature by analyzing gradient sensitivity, namely 
the partial derivative of the model’s output with respect to each input 
feature (Simonyan et al., 2013). In this context, residues with high sa
liency values are those where small perturbations significantly affect the 
model’s output, indicating strong influence on the prediction. Unlike 
SHAP, which captures global feature importance, saliency mapping 
provides fine-grained, spatially resolved insights, allowing visualization 
of critical regions on the protein surface that distinguish between clas
ses. The magnitudes of the scores across all features were summed per 
node, identifying residues with the highest influence on classification. A 
representative saliency map with residue annotations is provided as 
Fig. 4a.

In order to examine the positional trends among these residues, their 
surface exposure was analyzed using the FreeSASA Python package 
(Mitternacht, 2016), with a threshold of 0.25 to define exposed residues. 
From analyzing the peaks in the saliency scores (Fig. 4a), it was found 
that surface-exposed residues L, Q (Gln), C, A (Ala), V (Val), and P (Pro) 
were most important for distinguishing albumin from prolamin. In the 
case of globulin/glutelin, the most significant residues were surface- 
exposed E, Q, S, G, and R (Fig. 4b).

3.2.3. Globulin vs. glutelin: Distinct structural & residue-level differences
Compared to albumin and prolamin, globulin and glutelin exhibit 

more well-defined protein structures. Specifically, they share two cupin 
domains, which contain β-barrel motifs, enabling a more in-depth 
comparison of local features between the two SSP classes. Analysis of 
the regions with saliency scores >0.5 revealed a consistent positional 
bias outside the β-barrel structural motifs in both testing and entire 
datasets. These highlighted regions suggested that globulin and glutelin 
differentiation was primarily driven by variations in loop and helical 
regions rather than core β-strand structures, which remained relatively 
stable across different environmental and evolutionary pressures 
(Abrusán & Marsh, 2016; Eswar et al., 2003). The absence of highlighted 
regions within the β-barrel motifs also aligned with evolutionary ex
pectations, as these structural motifs are highly conserved to maintain 
functionality.

To further contextualize these findings, saliency maps were 
compared to the annotated positions of the two cupin domains, as 
retrieved from InterPro (Blum et al., 2025). Seven entries (P13917, 
Q8RVH5, A0A072VR, A0A7J0GR, A0A8S9FU, A0A0E0M7E9, and 
A0A444DIN8) were excluded due to the absence of domain annotations. 
This comparison revealed three distinct patterns. Pattern 1, the most 
frequent (61/99 in the testing set; 238/493 overall), highlighted the 
regions between the two cupin domains. Pattern 2 focused on regions 
within each cupin domain (24/99; 129/487), while pattern 3 showed 
outside the domains near the termini (14/99; 120/487). Representative 
saliency examples for Patterns 2 and 3 are provided in Fig. 5a and b, 
respectively. No clear association between pattern type and protein 
origin or functional subclass was observed.

The saliency pattern for globulin/glutelin exhibited a clear positional 
trend, prompting a comparison of amino acid compositions within the 
highlighted regions of the two classes. In the testing set, the highlighted 
regions of globulins contained notably higher rE (23.07 %) compared to 
glutelins (13.64 %). Other major differences included rG, rQ, and rS. 
This trend persisted across the entire dataset, with the magnitude of 
differences exceeding those observed in full-sequence comparisons 
(Fig. 6a). Moreover, combining the highly divergent amino acid ratios 
(rE, rG, rQ, and rS) further amplified the distinction in amino acid 
composition between globulin and glutelin (Fig. 6b). These findings 
suggested that local loop and helical regions outside the barrel motif 
exhibit marked differences in E, Q, G, and S residues between globulins 

Fig. 3. SHapley Additive exPlanations (SHAP) scatter plots showing feature importance in seed storage protein classification. Feature values are color-coded from 
low (blue) to high (red), and SHAP values indicate each feature’s impact on the model output for individual predictions. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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and glutelins.
Given that GCN captures both structural connectivity and residue 

interactions that differentiate the two classes, the significance of these 
residues could be interpreted in two ways. First, the model could have 
identified inherent structural and compositional differences, where 
surface residues simply reflected distinct amino acid distributions and 
folding patterns across different classes without necessarily driving 
functional differences (Lapuschkin et al., 2019). Alternatively, these 
residues might actively contribute to solubility differences by influ
encing solvent interactions, hydration dynamics, and charge distribu
tion. In this sense, the extent to which these selected residues for 
globulin and glutelin influenced solubility differences remained unclear. 
For example, one of the key residues, E, is already negatively charged at 
neutral environment, meaning it does not significantly alter the surface 
charge under basic conditions. Similarly, the other important residues 
for distinguishing globulin from glutelin, namely, G, Q, and S, are not 
protonatable, making it uncertain how they would directly affect glu
telin solubility at high pH.

It should be noted that model outputs were interpreted in two 
distinct ways depending on the protein classes. For albumins and pro
lamins, the top-ranked SHAP features (e.g., charged residues, hydro
philic residue content, hydrophobic patch area) were biophysically 
consistent with known mechanisms of solubility in aqueous environ
ments. In contrast, for globulins and glutelins, although both SHAP and 
saliency mapping identified discriminative features (e.g., Coulombic 
potential, surface loop composition), these did not align clearly with 
known salting-in mechanisms. To further explore this, a set of MD 
simulations was performed.

3.3. All atomic molecular dynamic simulation

3.3.1. AA-simulation of 2S soy albumin & 19 kDa maize zein in water & 
70 % ETOH

To explore the interaction between SSPs and solvent environment, a 
set of AAMD simulations were performed on 2S soy albumin and 19 kDa 
maize zein (prolamin). When the 3D structure of 2S soy albumin was 

Fig. 4. Representative saliency score peaks illustrating the identification of key residues for seed storage protein classification (a) and top 5 residue types identified 
from the score peaks and their relative exposures (b).
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subjected to water, only a minor change in the tertiary structure from 
the initial structure was observed (Fig. 7a). In 70 % ETOH, on the other 
hand, exposure of the hydrophobic core was noted, which aligned with 
the evolution of RMSD and hydrophobic SASA over the trajectory 
(Fig. 7b). In the case of 19 kDa maize zein, more dramatic structural 
changes were detected compared to those of albumin. In water, the 
initial zein structure collapsed to form a compact structure. On the other 
hand, the prolamin displayed markedly expanded structure in 70 % 

ETOH (Fig. 7c). This expanded structure of 19 kDa zein was similar to 
those observed from the small angle x-ray scattering (22/19 kDa zein 
mixture in methanol solution) (Tatham et al., 1993) and other MD 
simulation study for α-zein in 100 % ethanol (Christensen, 2024). 
Moreover, the increased hydrophobic SASA in 70 % ETOH also aligned 
with the previous report that zein composites displayed higher surface 
hydrophobicity in ethanol compared to in water (Anvar et al., 2025).

To identify the factors driving the observed exposures of 

Fig. 5. Representative saliency scores highlighting high-saliency regions (>0.5), shown with 3D protein structure mapping for pattern 1 (a), and saliency profiles for 
patterns 2 and 3 (b).
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hydrophobic residue in 70 % ETOH, energy decomposition and 
hydrogen bonding analysis were conducted. Energy calculations were 
performed using the gmx_energy function, which isolates the energy 
contributions of different entities throughout the trajectory under the 
applied force field. In the CHARMM force field series, non-bonded in
teractions are governed by Coulombic interactions and the Lennard- 
Jones (LJ) potential (Zhu et al., 2012). Between the two, hydrophobic 
interactions are dictated by LJ potential, as nonpolar molecules lack 
significant partial charges and primarily interact via van der Waals 
forces rather than electrostatics (Brooks et al., 2009). When the average 
LJ potentials of hydrophobic residues with the rest of the system were 
compared, those in 70 % ETOH exhibited a significant increase in the 
van der Waals interaction energy in both albumin and prolamin, sug
gesting the shift of the system in a way of promoting hydrophobic- 

hydrophobic interactions (Fig. 8a). On the other hand, when the num
ber of intra-molecular hydrogen bonding was compared, interestingly, 
despite the observed denaturation (exposed hydrophobic residues), al
bumin formed an increased number of internal hydrogen bonds 
compared to ethanol, while no clear difference was observed in the 
prolamin (Fig. 8b).

As the observed changes in the number of hydrogen bonds (nohb) 
were counterintuitive to the idea that alcohol would disrupt intra
molecular hydrogen bonding (Thomas & Dill, 1993), the evolution of 
nohb between the solvent and proteins was computed (Fig. 9a-d). For 
better visibility, Savitski-Golay filter (Savitzky & Golay, 1964) with 
polyorder 3 was applied (dark). As illustrated in the figure, for both 
albumin and prolamin, the nohb between solvent and protein was 
noticeably lower in 70 % ETOH than in water. This was expected, as 

Fig. 6. Comparison of amino acid composition between globulins and glutelins, focusing on regions highlighted by saliency scores (>0.5) (a). Class-wise differences 
in the relative abundance of selected residues (E, G, Q, S) based on saliency-highlighted regions versus entire sequences (b).
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ethanol is larger than water and possesses only a single hydrogen bond 
donor, limiting its ability to form extensive hydrogen bond networks 
with proteins. For albumin, the protein-solvent nohb experienced an 
abrupt decrease in 70 % ETOH, while it remained stable in water 
(Fig. 9b, c). Moreover, in 70 % ETOH, the decrease in the solvent-protein 

nohb accompanied an increase in the intra-protein nohb (Fig. 9e), sug
gesting that hydrophilic albumin rearranged to form more intra- 
molecular hydrogen bonds to maintain structural stability. This 
observed increase in internal hydrogen bonding in albumin under 70 % 
ethanol aligned with recent MD and CD studies on biomacromolecules 

Fig. 7. Conformational changes of soy 2S albumin and 19 kDa zein in water and 70 % ethanol (a) and evolution of root-mean-square deviation (RMSD) and hy
drophobic solvent-accessible surface area (SASA) of the albumin (b) and prolamin (c).
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such as spidroins, where ethanol exposure led to enhanced intra- 
molecular hydrogen bonding, helix/turn stabilization, and aggregation 
(Tolmachev et al., 2023). Furthermore, CD spectroscopy on human 
serum albumin revealed a recovery of α-helical content at ethanol con
centrations above 55 %, alongside reversible aggregation behavior 
(Taboada et al., 2007), supporting the idea that ethanol can promote 
internal, structural rearrangement rather than complete destabilization.

In the case of prolamin, on the other hand, the solvent-protein nohb 
displayed abrupt decrease in water but not in 70 % ETOH (Fig. 9b, d). 
However, unlike the case of albumin, this decrease did not accompany 
gain in the intra-protein hydrogen bonds (Fig. 9f). These observations 
highlighted the differences in solvent adaptation between 2S albumin 
and 19 kDa zein: unlike the hydrophilic albumin, which reorganized its 
hydrogen bonding network against less polar environment, the hydro
phobic prolamin instead relied on stronger hydrophobic interactions 
with solvent, which became significantly more stabilizing in ethanol. 
Moreover, prolamin did not compensate for the loss of solvent-protein 
nohb with intra-molecular hydrogen bonds, likely due to its intrinsi
cally lower hydrogen bond-forming potential (higher proportion of hy
drophobic residues). Taken together, the observed exposure of 
hydrophobic residues (Fig. 7b, c), the increase in van der Waals in
teractions (Fig. 8a), and the stability of the internal hydrogen bonding 
network (Fig. 8b), collectively suggested that hydrophobic interactions, 
rather than the disruption of internal hydrogen bonds, were the domi
nant factor driving the observed denaturation in 70 % ethanol for the 
two tested SSPs.

Notably, fluctuations were observed in the RMSD profiles of the 70 % 
ethanol systems, particularly for 19 kDa zein. These variations were 
more likely attributable to solvent-induced structural transitions rather 
than numerical instability. For example, both RMSD and hydrophobic 
SASA increased in albumin and prolamin under ETOH, indicating partial 
unfolding and hydrophobic core exposure. This behavior was consistent 
with prior findings that ethanol disrupts intra-molecular hydrophobic 
interactions and promotes protein expansion (Halder & Jana, 2021), as 
well as with the classical hydrophobic effect. These trends were sup
ported by Fig. 7b and 9, where increased surface exposure of hydro
phobic residues and rearrangement of internal hydrogen bonds seemed 
evident. Thus, the observed RMSD fluctuations likely reflected adapta
tion to the ethanol-rich environment. Given that the study aimed to 
compare solvent-induced structural changes rather than achieve full 

Fig. 8. Average Lennard-Jones potential energy between protein and system in 
water and 70 % ethanol (a) and intra-protein hydrogen bond counts (b).

Fig. 9. Time evolution of protein-solvent and intra-protein hydrogen bonding in water and 70 % ethanol (a ~ d). Initial changes in the number of hydrogen bonds (e 
~ f) for 2S soy albumin and 19 kDa zein.
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equilibration, and considering the substantial differences observed 
across solvent conditions, it was regarded that the current trajectories 
were sufficient to support our conclusions.

3.3.2. AA-simulation of 11S pea globulin & rice glutelin in water & 1 M 
NaCl

When the structures of pea legumin A (globulin) and rice glutelin A1 
were simulated in water and 1 M NaCl, no dramatic changes in the 
tertiary structures were observed for both proteins (Fig. 10a). Globulin 
displayed an increased RMSD in 1 M NaCl compared to in water 
(Fig. 10b), while no significant difference was observed for glutelin. 
However, the increase in RMSD for globulin appeared to originate from 
the highly charged loop region (Fig. 10a), rather than from global 
unfolding, as the RMSD of the β-barrel core and the hydrophobic SASA 

of the entire protein remained largely unchanged across the simulation 
in both water and saline solution (Fig. 10b, c).

Unlike the addition of hydrophobic solvents, the most direct effect of 
adding salt would be the disruption of electrostatic interactions between 
charged residues. To quantify the degree of disrupted electrostatic in
teractions, the Coulombic potential between the charged residues, as 
well as the number of salt bridges were computed (Fig. 11a,b). As can be 
seen from the figures, both globulin and glutelin displayed less stabilized 
coulombic potential in 1 M NaCl compared to water. This was also re
flected in the decreased number of salt bridges in the saline solution. On 
the other hand, while 1 M NaCl effectively decreased the magnitude of 
the interaction between charged residues, no significant changes in the 
nohb of the barrel roll was observed (Fig. 11c). Therefore, considering 
the minimal changes in hydrophobic SASA (Fig. 10 b,c) and the 

Fig. 10. Conformational changes of pea legumin A and glutelin A1 in water and 1 M NaCl (a), and the evolution of root-mean-square deviation (RMSD) for the 
protein and barrel roll, along with hydrophobic solvent-accessible surface area (SASA), for globulin (b) and glutelin (c) under the same conditions.
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preserved hydrogen bonding network in the β-barrel core, our results 
suggested that although intra-protein electrostatic interactions were 
significantly weakened in saline conditions, this did not induce global 
conformational changes in the tertiary structures of the SSPs analyzed. 
This outcome should be interpreted within the context of the limited 
simulation timescale (200.0 ns), which may not capture slower struc
tural transitions occurring over longer periods.

In addition to the structural changes induced by salt addition, one 
more question remained to be answered: whether the regions high
lighted by the GCN model would have any meaningful attribution to the 
solubility difference or not. Fig. 12 presents the regions highlighted by 
the GCN model, and the root mean square fluctuation (RMSF) of resi
dues. As can be seen from the figure, these regions were located at the 
regions with higher tendency to fluctuate. This higher variability was 
sensible, as they were exposed to the surface, and since these regions 
were located at mostly loop and helical regions, which are more sus
ceptible to fluctuations than strand structures in most cases (Pathak 
et al., 2021). When the fluctuation in water and in salt was compared, 
only a slight increase in the overall fluctuation was observed in 1 M NaCl 
for both globulin and glutelin. The exception was at the region 3 of pea 
legumin, where notably higher movements in 1 M NaCl were found. This 
high fluctuation likely stemmed from the highly charged nature of 

region 3 and the residues nearby (Fig. 10a). More importantly, it was 
highly questionable whether the movement of this local loop region 
would trigger any meaningful difference in protein structure that would 
alter solubility. Instead, given the minimal changes in the overall ter
tiary structure (Fig. 10a), it was more plausible that the GCN model 
primarily identified regions with distinct residue compositions rather 
than those directly contributing to solubility differences. This result 
suggested that while the GCN model effectively captured sequence 
variation, additional factors such as intermolecular interactions must be 
considered to fully understand the solubility differences between glob
ulin and glutelin.

3.4. Coarse-grained molecular dynamics simulation

3.4.1. CG-simulation of 2S soy albumin & 19 kDa maize zein in water & 
70 % ETOH

While simulating a single protein under different solvent environ
ments provides insights into structural changes, protein solubility is a 
property arising from multiple protein-protein interactions. To investi
gate the role of intermolecular interactions, CG simulations were con
ducted with five monomers at 1 % concentration. The effective 
simulation time was computed using the standard Martini speed con
version factor of 4.0 (Marrink et al., 2007). As shown in Fig. 13a, soy 2S 
albumin and 19 kDa zein exhibited distinct solubility behaviors, forming 
aggregates in solvents known to reduce their solubility. Additionally, the 
number of residual contacts was computed using the MDAnalysis 
package (Gowers et al., 2019) with a 4.5 Å distance contact threshold 
(Fig. 13b). For albumins, while some prolonged contacts were observed 
in water, the degree of contacts in 70 % ETOH was notably higher and 
formed more abruptly under the given simulation time. The partial ag
gregation of albumins in water was also observed in our previous CG 
simulation of multiple albumins in water, which did not incorporate 
PTMs (i.e., signal peptide and propeptide regions were not removed) 
(Kwon et al., 2024). In contrast to albumins, prolamins exhibited an 
opposite trend, where the number of contacts increased in water. 
Notably, in 70 % ETOH, prolamins initially formed contacts but subse
quently dissociated after 500.0 ns, further highlighting the ability of 
hydrophobic solvents to prevent prolamin aggregation.

To determine the residues contributing the most to the observed 
aggregation, residue-specific contacts were computed throughout the 
trajectory, and the top five residues with the highest degree of contacts 
were identified (Fig. 13c). For albumins in 70 % ethanol, charged (Asp, 
Glu, Lys) and polar (Ser, His) residues were the primary contributors to 
the observed aggregation in 70 % ETOH, indicating that electrostatic 
and hydrophilic interactions drove the clustering in the less polar 
solvent.

Conversely, for prolamins in water, hydrophobic residues (Phe, Leu, 
Pro, Ala) dominated, with only a minor contribution from the polar 
residue Gln. The identified residues highlighted that hydrophobic in
teractions predominantly governed the aqueous aggregation of 19 kDa 
zein. The aqueous aggregation behavior of zeins, dominated by hydro
phobic residues, aligned with previous findings that hydrophobic 
dehydration-driven clustering facilitates aggregate formation 
(Thirumalai et al., 2012). In summary, the simulations suggested the 
solvent-dependent aggregation behaviors of the two SSPs, where hy
drophilic albumin aggregated via electrostatic interactions in less polar 
solvents, while hydrophobic prolamin agglomerated through hydro
phobic interactions in aqueous environments.

3.4.2. CG-simulation of 11S pea legumin A & rice glutelin A1 in water & 1 
M NaCl

Unlike albumins and prolamins, globulins and glutelins did not 
exhibit the expected solubility behavior in different solvents. Specif
ically, both protein types aggregated in water but remained soluble in 1 
M NaCl (Fig. 14a), suggesting that electrostatic interactions played a 
crucial role in their clustering. On the other hand, residue-specific 

Fig. 11. The average Coulombic energy between protein and system (a), salt 
bridge count (b), and hydrogen bonding count at barrel rolls in water and 1 M 
NaCl (c) for pea legumin A and rice glutelin A1.
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contact analysis in water revealed a more diverse interaction profile for 
globulins and glutelins (Fig. 14b). These interactions included electro
static attractions (Lys, Arg), π-π stacking (Phe, Tyr), hydrogen bonding 
(Ser, His), and hydrophobic effects (Phe, Ala). Thus, the contact-prone 
residue composition of aggregated globulins and glutelins contrasted 
with that of 2S soy albumins and 19 kDa zein. While albumin aggrega
tion was primarily driven by electrostatic interactions and prolamin 
aggregation by hydrophobic interactions, pea legumin A and rice glu
telin A1 aggregation appeared to be influenced by a more complex 
interplay of multiple interactions.

To quantify the role of the saliency-highlighted regions in the 
observed aggregations, the average number of contacts formed by these 
regions was compared to that of all other residues. For a clear compar
ison, three percentiles of contact-forming residues (top 10 %, 25 %, and 
50 %) were analyzed. As shown in Fig. 14c, for both globulin and glu
telin, the saliency-highlighted regions exhibited a significantly lower 
number of contacts throughout the simulation compared to other 
contact-forming residues, suggesting that these regions did not directly 
contribute to aggregation.

Contrary to the experimentally observed solubility differences be
tween globulin and glutelin, simulations of their monomeric states dis
played similar aggregation behavior—both were insoluble in water but 
remained soluble in 1 M NaCl. Furthermore, none of the three additional 
analysis protocols (global features, residue-level features, and all-atom 
simulations) provided clear evidence to explain their solubility differ
ences. The lack of a direct correlation between specific features and the 
pH-dependent solubility of glutelin, along with the similar dynamic and 
aggregation behaviors observed in MD simulations, suggested that these 
solubility differences might not stem from monomeric properties alone. 
Instead, it was likely that higher-order structures, particularly inter- 
protein disulfide networks, would play a crucial role in glutelin 

insolubility. This hypothesis aligns with the fact that glutelins are 
typically extracted under reducing conditions (e.g., DTT) in addition to 
alkaline solvents (e.g., NaOH), indicating that disulfide-mediated su
pramolecular assemblies significantly influence their solubility proper
ties. Moreover, glutelins and 11S globulins are thought to share a 
common ancestral gene and display considerable sequence and struc
tural similarity. Our BLAST pairwise alignment (Altschul et al., 1990) 
yielded 36 % sequence identity and 57 % similarity (both identical 
residues and those with similar physicochemical properties) between 
the two proteins used in this study. The observed similarity between the 
two groups is further supported by previous work showing high 
sequence identity between rice glutelins and other 11S-type globulins, 
such as chickpea legumin (Chang & Alli, 2012). Notably, related storage 
proteins like oat 12S globulin have also shown significant sequence 
similarity to rice glutelins (Shotwell et al., 1990), reinforcing their 
evolutionary and structural relatedness.

Additional support for this idea comes from the work of Katsube 
et al., where soy glycinin (globulin) gene was expressed in rice (Katsube 
et al., 1999). Their study found that while glycinin was generally solu
bilized by salt solutions, it partially formed insoluble complexes with 
endogenous glutelins through disulfide networks. Further experimental 
evidence includes multiple reports where incorporation of reducing 
agents significantly increased extraction yields for glutelins (Roy et al., 
2023; Wilson et al., 1981). Moreover, it was reported that rice glutelin 
fractions are extensively cross-linked via disulfide networks (Amagliani 
et al., 2017). Consistent with this, our computational findings suggested 
that monomer-based analysis alone might be insufficient to explain the 
experimental solubility differences in globulin and glutelin classes, 
highlighting the critical role of higher-order supramolecular structures 
in glutelin insolubility.

Fig. 12. Saliency-highlighted regions of pea legumin A and rice glutelin A1 with corresponding root-mean-square fluctuation (RMSF) profiles.
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4. Conclusion

This study systematically analyzes the monomeric properties of 
Osborne-classified seed storage proteins (SSPs) through a multi-faceted 
computational approach, integrating structural modeling, machine 
learning, and molecular dynamics simulations with the largest dataset to 
date. Distinctive physicochemical features defining each class were 

identified, such as the high cysteine content of albumins and the low 
abundance of charged amino acids in prolamins. Compared to albumins 
and prolamins, globulins and glutelins exhibited similar physicochem
ical properties, reflecting their evolutionary and structural closeness. 
Furthermore, interpretation of support vector classifiers trained on 
global physicochemical features successfully delineated key differences 
among the protein classes. Molecular dynamics simulations further 

Fig. 13. Coarse-grained molecular dynamics simulation of multiple soy 2S albumin and 19 kDa zein (a), evolution of contacts (b), and top 5 residues involved in 
aggregation (c).
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Fig. 14. Coarse-grained molecular dynamics simulation of multiple 11S legumin A and glutelin A1 with saliency-highlighted regions (purple) (a), top 5 residues 
involved in aggregation (b), and comparison of contact frequencies between residues with high contact ranks and GCN-selected regions (c). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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elucidated distinct dynamic and aggregation behaviors in representative 
model proteins, where albumins (2S soy albumin) exhibited greater 
aqueous solubility, whereas prolamins (19 kDa zein) preferentially 
dissolved in ethanol, reflecting their reduced solubility in water.

For globulins and glutelins, saliency mapping from a graph con
volutional network classifier revealed distinct residue-level variations in 
the loop and helical regions outside their β-barrel rolls, where significant 
differences in the distributions of E (Glu), Q (Gln), S (Ser), and G (Gly) 
residues were observed between the two classes. However, all-atomic 
and coarse-grained molecular dynamics simulations of model proteins 
(pea legumin A and rice glutelin A1) did not reveal significant differ
ences in their dynamics and aggregation patterns. Combined with 
similar physicochemical profiles, these findings provide computational 
support for the experimental evidence suggesting that the solubility 
differences between globulins and glutelins are primarily dictated by 
supramolecular interactions, particularly disulfide-mediated network 
formation.

Overall, this study integrates modern computational approaches to 
provide molecular insights into the distinct properties of each Osborne 
class and their solubility under different solvent conditions. The pro
posed framework and key findings not only advance our understanding 
of seed storage protein behavior but also have valuable implications for 
food science. Moreover, by elucidating the molecular basis of distinct 
behaviors of each Osborne class, this study establishes a foundation for 
improving protein dispersibility, solubility, and stability in food hy
drocolloid systems, ultimately contributing to the development of plant- 
based food products with desired functional properties. For example, the 
findings regarding globulin and glutelin solubility may inform future 
process design by emphasizing the need to critically evaluate whether 
conventional extraction conditions, such as low pH or high ionic 
strength, are sufficient to disrupt supramolecular disulfide-linked net
works, or whether additional strategies (e.g., reducing agents, enzy
matic cleavage) are required.

The limitations of this study should be addressed in future research. 
While SHAP and saliency mapping improved interpretability for both 
machine learning and deep learning models, the inner workings of the 
GCN models could remain largely opaque. Although GCN captures 
residue-level connectivity through both node and edge matrices, our 
current models focus only on node features due to the complexity of 
analyzing 2D contact maps. Despite this limitation, the consistent 
localization of high-saliency regions across ~500 proteins suggested 
that the model’s decisions were biologically meaningful and non- 
random. Moreover, given that native SSPs often exist as oligomeric as
semblies, it is important to note that the present study was limited to 
analyzing monomeric properties. For future studies, it would be valu
able to systematically examine glutelin solubility under different salt 
types and concentrations, particularly if high-purity isolation and 
monomeric stabilization are achievable. Additionally, simulations of 
oligomeric assemblies and interprotein interactions (e.g., legu
min–vicilin systems) could offer deeper insights into aggregation-prone 
interfaces and solvation dynamics beyond the monomeric level.
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