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A B S T R A C T

Understanding the behavior of gliadin in mixed aqueous-organic solvents is vital for food material science. This 
study integrates advanced structure prediction with microsecond-scale molecular dynamics (MD) simulations to 
explore the conformational and solvation behavior of α-gliadin across ethanol-water mixtures. Our findings 
reveal that α-gliadin maintains structural stability across all solvent conditions, with a progressive increase in 
molecular expansion at higher ethanol concentrations. Ethanol promotes up to 30 % more salt bridges, enhances 
helical content, and reduces β-sheet formation. Residue-level flexibility analysis reveals that specific segments, 
such as Gln227-Ala261, Tyr121-Gln136, and the proline- and glutamine-rich region Pro64-Leu78, exhibit higher 
fluctuation, suggesting their sensitivity to solvent-induced conformational changes, whereas domains stabilized 
by electrostatic and covalent interactions remain rigid (show less fluctuation). Thermodynamic and PCA analyses 
highlight stronger protein-solvent interactions and greater conformational diversity at higher ethanol concen
trations. This work provides a detailed molecular-level quantification of how ethanol modulates α-gliadin 
structure and solvation.

1. Introduction

Wheat gluten proteins are essential for the functional properties of 
dough, imparting the viscoelasticity and extensibility that define the 
quality of baked goods and other wheat-based products (Shewry et al., 
2002). Gluten consists of two major fractions, gliadins and glutenins. 
Among these, α-gliadin, a monomeric protein soluble in aqueous ethanol 
and rich in glutamine and proline residues, is a key component influ
encing behavior of the gluten in various solvent environments, such as 
ethanol-water mixtures, commonly encountered in gluten extraction 
and processing (Wieser, 2007). The high solubility of gliadins, particu
larly α-gliadin, in ethanol-water mixtures is a distinguishing biochem
ical property that underpins their selective extraction from wheat flour 
and their functional role in food processing (Tatham & Shewry, 1985). 
This selective solubility not only facilitates the separation of gliadins 
from glutenins but also highlights the importance of ethanol-water en
vironments in modulating gliadin structure and function. These solvent 
conditions significantly influence the structural properties of gluten, 
affecting its ability to form a cohesive network during dough develop
ment, which is vital for applications in baking and food formulation 
(Delcour et al., 2012; Urade et al., 2018). Beyond its role in food 

systems, α-gliadin has biomedical significance, as its glutamine-rich 
regions are primary antigens in celiac disease, a chronic autoimmune 
disorder affecting approximately 1 % of the global population (Fasano & 
Catassi, 2012; Sollid, 2002). Thus, understanding how ethanol-water 
mixtures modulate the structure and dynamics of α-gliadin is critical 
for both optimizing food processing and mitigating health risks associ
ated with gluten consumption.

The effect of ethanol-water mixtures on gluten proteins has been 
studied extensively through experimental methods, which have 
demonstrated that ethanol disrupts intra-protein interactions, leading to 
unfolding, increased solvent exposure, and changes in secondary struc
ture (Tatham & Shewry, 1985). For instance, ethanol has been shown to 
reduce hydrogen bonding within the protein while enhancing hydro
phobic interactions, resulting in a more extended conformation that can 
alter solubility and aggregation properties of gluten (Shewry & Belton, 
2024). However, experimental techniques such as circular dichroism 
and infrared spectroscopy offer limited atomic-level insight into the 
interplay between protein-solvent interactions, conformational dy
namics, and thermodynamic stability (Delcour et al., 2012). Moreover, 
due to the lack of an experimentally determined full-length structure for 
food proteins, the atomistic understanding of their behavior in different 
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solvent environments remains incomplete.
To address these limitations, computational modeling, particularly 

MD simulations, has become an increasingly powerful tool for studying 
food proteins and peptides at atomic resolution (Kumar, Du, Amacha
wadi, et al., 2025; Singh et al., 2018; Yu, Li, et al., 2023). MD studies 
have been successfully applied to elucidate the solvent effects on protein 
folding and dynamics, revealing how co-solvents like ethanol modulate 
hydrogen bonding networks, solvation shells, and conformational en
sembles (Gazi et al., 2023; Nassar et al., 2022). Recent advances in 
computational methods, including enhanced sampling techniques, ma
chine learning, and integrative modeling, have enabled detailed in
vestigations into the folding, stability, and functional properties of food 
proteins and peptides under various processing conditions (Kumar, Du, 
Amachawadi, et al., 2025; Kumar, Du, & Li, 2025; Kumar & Sastry, 
2021; Yang et al., 2024; Yang, Kumar, Kuang, Li, & Song, 2025; Yang, 
Kumar, Kuang, Song, & Li, 2025). In this study, we employ MD simu
lations to investigate the structural, dynamic, and thermodynamic re
sponses of α-gliadin in ethanol-water mixtures (0 %, 30 %, 70 %, and 
100 % v/v ethanol). Using advanced computational techniques 
including Free Energy Landscape (FEL) analysis, Principal Component 
Analysis (PCA), Minimum-Distance Distribution Functions (MDDFs), 
and Kirkwood-Buff integrals, we characterize the conformational 
changes, solvent interactions, and stability of the protein across these 
conditions. Our comprehensive approach provides new molecular-level 
insights into how ethanol drives structural and conformational changes 
in α-gliadin. These findings have direct implications for food material 
science, informing how solvent conditions influence gluten functionality 
during processing, and also shed light on the exposure of glutamine-rich 
epitopes relevant to celiac disease immunogenicity. To our knowledge, 
this study provides the first integrated analysis combining advanced 
structure prediction with microsecond-scale MD simulations to investi
gate full-length α-gliadin across graded ethanol–water environments. By 
linking atomic-level solvation patterns, conformational energetics, and 
domain-specific flexibility, this work offers a deeper mechanistic un
derstanding of the behavior of gliadin under processing-relevant solvent 
conditions that has not been reported previously.

2. Computational details

2.1. Structure prediction of α-gliadin

The study utilized the amino acid sequence of α-gliadin protein 
(accession number P18573) from wheat (Triticum aestivum), obtained 
from UniProt (https://www.uniprot.org/). The sequence and amino 
acid composition of α-gliadin are shown in Table S1. To predict the 
secondary structure of α-gliadin, established bioinformatics tools were 
employed. Specifically, the NPS@ server was used (Combet et al., 2000), 
which integrates algorithms like Garnier-Osguthorpe-Robson (GOR) III 
(Gibrat et al., 1987) and Ψ-Prediction of Secondary Structure (PHD) 
(Rost & Sander, 1993) to assign probabilities for each residue belonging 
to α-helices, β-strands, or random coils of α-gliadin. For tertiary structure 
prediction, a comprehensive suite of methods was employed, including 
deep learning-based methods (AlphaFold, DeepFold, ESMFold, Omega
Fold, and Robetta), template-based methods (I-TASSER and C-I- 
TASSER) and a method combines both neural network-based methods 
and template-based approach (D-I-TASSER). Each method is accompa
nied by a link to access relevant information or resources, as provided in 
Table S2. АlphaFold, a deep learning-powered tool, was used for ab initio 
structure prediction of α-gliadin in the absence of homologous templates 
(Jumper et al., 2021). Concurrently, Robetta was also employed to 
generate alternative models for comparison, leveraging a different 
structure prediction approach (Baek et al., 2021). In addition, ESMFold 
(Lin et al., 2023) and OmegaFold (Wu et al., 2022) were also employed 
for rapid protein structure predictions leveraging transformer-based 
architectures. These comprehensive approaches ensured robust and 
reliable structural predictions for the full-length α-gliadin protein. For 

template-based modeling, I-TASSER was used to identify templates from 
the PDB and construct full-length atomic models through iterative 
template-based fragment assembly simulations (Yang & Zhang, 2015). 
Furthermore, C-I-TASSER (Zheng et al., 2021) and D-I-TASSER (Li et al., 
2021) tools from the I-TASSER suite, along with DeepFold (Pearce et al., 
2022) were used for potential model refinement. These tools incorporate 
additional information like inter-residue contacts and optimize the 
initial models for enhanced accuracy. This comprehensive strategy 
ensured the generation of reliable and structurally sound 3D models for 
the full-length α-gliadin protein.

2.2. Initial MD simulation for structural refinement

To refine the modeled structures into more compact and energeti
cally favorable conformations, each of the α-gliadin models underwent a 
100 ns MD simulation using GROMACS 2023.3 (Abraham et al., 2015). 
These simulations were conducted in a water solvent environment, 
employing the SPC/E water model and the Amber99sb-ILDN force field 
(Lindorff-Larsen et al., 2010) for the protein. Each system was placed in 
a cubic box with a minimum distance of 1.0 nm between the protein and 
the box edges. The system was then neutralized with counterions and 
energy-minimized using the steepest descent algorithm. Equilibration 
was carried out in two stages: first in the NVT ensemble for 100 ps at 300 
Kelvin using the V-rescale thermostat, followed by 100 ps in the NPT 
ensemble at 1 bar using the Parrinello-Rahman barostat. The production 
simulations were run for 100 ns with a 2 fs time step, saving compressed 
coordinates every 10 ps. Long-range electrostatic interactions were 
handled using the Particle Mesh Ewald (PME) method with a 1.0 nm 
cutoff. Van der Waals interactions were cut off at 1.0 nm, with dispersion 
correction applied for energy and pressure. Bonds involving hydrogen 
atoms were constrained using the LINCS algorithm.

2.3. Model evaluation and selection

After 100 ns MD simulations, the final structure of each model were 
evaluated using multiple metrics to select the best model for further 
analysis. The Root Mean Square Deviation (RMSD) and radius of gyra
tion (Rg) were computed to assess structural stability and compactness. 
Structural quality was further evaluated using ERRAT (Colovos & 
Yeates, 1993) on the SAVES server. ERRAT analyzes the statistics of non- 
bonded interactions between atoms within the protein structure and 
compares them to a database of reliable, high-resolution structures. This 
analysis helps identify regions of the model with potential errors. 
Furthermore, PROCHECK was used for Ramachandran plot analysis to 
assess the phi (ϕ) and psi (ψ) torsion angles of the protein backbone 
(Laskowski et al., 1993). These angles define the allowed conformations 
for amino acid residues within a protein structure. Deviations from the 
expected Ramachandran plot regions can indicate structural errors or 
strained conformations. Additionally, ProSA-web (Wiederstein & Sippl, 
2007) was used for structural evaluations. ProSA-web employs a po
tential energy function to assess overall quality and stability of predicted 
structures. Furthermore, we evaluated overall model quality using an 
array of structural validation metrics, including MolProbity (global 
structural quality), Clash (steric hindrance), Ramachandran plot 
(backbone geometry), and QMEANDisCo Global score (consensus 
quality). These metrics provide a comprehensive assessment of the ac
curacy and reliability of predicted models.

2.4. Extended MD simulation in ethanol-water mixtures

The selected model was subjected to extended MD simulations in 
four ethanol-water solvent mixtures with ethanol concentrations of 0 %, 
30 %, 70 %, and 100 % (v/v) to investigate solvent effects on the 
structure of protein. The number of water and ethanol molecules, as well 
as the total number of atoms and simulation box volume for each system, 
are provided in Table S3. Here, “XEtOH” denotes the mole fraction of 
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ethanol in the simulation box, with the corresponding percent volume/ 
volume (v/v) ethanol concentration provided in parentheses for clarity. 
For each solvent condition, two independent replicas were run to ensure 
statistical reliability, resulting in a total of eight simulations. Simula
tions were performed using GROMACS 2023.3 for 1000 ns each, with a 
2-fs time step, under the NPT ensemble at 300 K and 1 bar pressure. The 
Amber99sb-ILDN force field was used for the protein, the SPC/E model 
for water, and ethanol molecules were parameterized using the 
CHARMM General Force Field (CGenFF) via the acpype tool 
(v2022.7.21). The simulation setup, including system preparation, en
ergy minimization, equilibration (100 ps NVT followed by 100 ps NPT), 
thermostat (V-rescale), barostat (Parrinello-Rahman), PME electro
statics (1.0 nm cutoff), van der Waals interactions (1.0 nm cutoff with 
dispersion correction), and bond constraints (LINCS, all bonds), was 
identical to the initial 100 ns simulations unless otherwise specified. 
Coordinates and energies were saved every 2 ps for analysis, providing 
higher temporal resolution for the extended simulations.

2.5. Analysis of structural dynamics and solvent interactions

Structural dynamics and solvent interactions of α-gliadin were 
analyzed using GROMACS, with custom Python scripts (MDAnalysis, 
Seaborn, Matplotlib) for data processing and visualization. Conforma
tional stability was assessed by calculating the RMSD for two replicas 
per solvent condition. Protein compactness was evaluated by computing 
Rg over time across replicas. Secondary structure evolution (α-helices, 
β-sheets) was tracked using the DSSP algorithm. SASA was calculated, 
and mean values across replicas were analyzed for each ethanol con
centration to determine overall solvent effects. Hydrogen bonding with 
water and ethanol was analyzed using gmx hbonds. RMSD distributions 
were visualized with histograms and kernel density estimation (KDE) to 
capture conformational heterogeneity within individual replicas (y-axis: 
probability). SASA distributions were visualized using KDE only to 
highlight the averaged solvent effect across replicas (y-axis: probability 
density). To compute the minimum distance distribution function 
(MDFF) and Kirkwood-Buff Integrals, we utilized the ComplexMixtures. 
jl package (Martínez, 2022). PCA was performed on C-α atoms of the MD 
trajectory using GROMACS. The covariance matrix of atomic positional 
fluctuations was calculated with gmx covar, and eigenvalue decompo
sition was carried out using gmx anaeig to obtain the principal com
ponents. The first two principal components (PC1 and PC2) were 
selected as reaction coordinates for further analysis. The MD trajectory 
was projected onto these components, and the resulting distributions 
were used to construct a two-dimensional free energy landscape with the 
gmx sham utility, estimating the Gibbs free energy as a function of PC1 
and PC2. The minima on the FEL, corresponding to the most stable 
conformational states, were identified by locating the lowest free energy 
values, and the time frames closest to these minima were mapped back 
to the trajectory for structural characterization.

3. Results and discussion

3.1. Structure prediction and initial refinement of α-gliadin models

Due to the lack of an experimentally determined full-length structure 
for α-gliadin, its structure was predicted using various deep learning- 
based, template-based, or hybrid methods as described in Section 2.1. 
The templates selected by I-TASSER and C-I-TASSER are provided in 
Table S4. The predicted structures (Fig. S1) showed that deep learning- 
based methods (АlphaFold, DeepFold, ESMFold, OmegaFold) produced 
more extended conformations compared to template-based methods (I- 
TASSER, C-I-TASSER), while the hybrid D-I-TASSER method displayed 
intermediate characteristics. All predicted structures exhibited a com
bination of helical and coiled regions, which is consistent with prior 
experimental studies reporting 30–35 % α-helix content in α-gliadin 
(Tatham & Shewry, 1985; Urade et al., 2018) as well as in the secondary 

structure prediction from sequence (Fig. S2). However, none of the 
models captured the experimentally reported β-strand content (Tatham 
& Shewry, 1985; Urade et al., 2018), likely due to limitations in deep 
learning training datasets or biases in template selection. To refine these 
models, 100 ns MD simulations were performed, resulting in more 
compact structures (Fig. S3). Comparisons of pre- and post-simulation 
conformations revealed that template-based models retained greater 
structural integrity than deep learning-based models, suggesting that 
evolutionary constraints from template selection enhance stability dur
ing dynamics.

3.1.1. Conformational stability and compactness during initial refinement
The compactness and stability of the refined models were assessed 

using Rg and RMSD over the 100 ns simulations conducted in pure 
water, which serves as a standard reference environment for evaluating 
protein structural properties in silico (Lindorff-Larsen et al., 2010). Rg 
measures the compactness of protein, while RMSD indicates structural 
stability over time. Fig. 1A shows Rg for each model, with error bars 
representing variability across simulation time. C-I-TASSER exhibited 
the lowest Rg at 2.02 ± 0.02 nm, indicating a highly compact structure 
with minimal fluctuations. D-I-TASSER followed closely with an Rg of 
2.14 ± 0.03 nm. I-TASSER and ESMFold showed moderate compactness 
with Rg values of 2.54 ± 0.05 nm and 2.63 ± 0.24 nm, respectively. 
OmegaFold, АlphaFold, and DeepFold had higher Rg values of 3.01 ±
0.29 nm, 3.16 ± 0.32 nm, and 3.19 ± 0.40 nm, respectively, while 
Robetta exhibited the highest Rg at 3.95 ± 0.53 nm, reflecting less 
compact structure with greater variability. Fig. 1B shows the RMSD, 
with C-I-TASSER and D-I-TASSER maintaining the lowest RMSD at 0.62 
± 0.08 nm and 0.81 ± 0.07 nm, indicating high stability. I-TASSER and 
ESMFold had RMSD values of 0.93 ± 0.12 nm and 1.67 ± 0.21 nm, 
respectively, suggesting moderate stability. OmegaFold, DeepFold, and 
АlphaFold showed higher RMSD values of 2.30 ± 0.34 nm, 2.09 ± 0.49 
nm, and 2.98 ± 0.46 nm, respectively, indicating greater conforma
tional flexibility. Robetta had the highest RMSD at 3.30 ± 0.67 nm, 
reflecting significant structural rearrangement. These trends suggest 
that template-based and hybrid methods (C-I-TASSER, D-I-TASSER, I- 
TASSER) produce more stable and compact models, likely due to their 
reliance on experimentally validated templates, while deep learning 
methods (АlphaFold, DeepFold, OmegaFold, Robetta) predict more 
flexible structures that undergo larger conformational changes during 
MD refinement. The variability in Rg and RMSD across methods high
lights the challenge of modeling food proteins like α-gliadin, where 
flexibility is a functional trait but can lead to overprediction of extended 
conformations in deep learning models. These trends align with exper
imental observations of α-gliadins in 0.01 M NaCl (pH 4), which re
ported a low intrinsic viscosity (4.0 mL g− 1) and a hydrodynamic radius 
of ~2.0 nm, consistent with compact conformations (Cole et al., 1984). 
C-I-TASSER, D-I-TASSER, ESMFold, and I-TASSER models best captured 
this compactness, with Rg values closest to the experimentally inferred 
hydrodynamic radius (Cole et al., 1984). In contrast, АlphaFold, Deep
Fold, OmegaFold, and Robetta overestimated the size of the protein, 
potentially due to their tendency to predict extended conformations that 
relax more significantly during MD simulations.

3.1.2. Structural quality assessment of predicted models
The structural quality of the refined models was thoroughly assessed 

using multiple metrics, as summarized in Table 1. Among AI-based 
methods, ESMFold demonstrated highest overall quality, achieving a 
MolProbity score of 1.26, a Clash Score of 0.00, an ERRAT score of 
66.31, a ProSA Z-score of − 7.17, a QMEANDisCo Global score of 0.54 ±
0.05, and 91.61 % of residues in favored Ramachandran regions (Table 1
and Fig. S4). АlphaFold followed closely, with a MolProbity score of 
1.28, a Clash Score of 0.82, an ERRAT score of 63.19, a ProSA Z-score of 
− 5.83, and 91.97 % of residues in favored Ramachandran regions. 
DeepFold, while exhibiting minimal steric clashes (Clash Score: 0.62), 
showed lower reliability with an ERRAT score of 49.10. Among 
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template-based approaches, C-I-TASSER performed best, with a Mol
Probity score of 1.81, a Clash Score of 1.03, an ERRAT score of 70.40, a 
ProSA Z-score of − 5.41, and 85.40 % of residues in favored Ram
achandran regions. D-I-TASSER, despite a high ERRAT score (74.39), 
had notable steric clashes (Clash Score: 1.44). Robetta achieved highest 
ERRAT score (76.39) among all methods but also exhibited moderate 
clashes (Clash Score: 1.24).

Although the C-I-TASSER, D-I-TASSER, and Robetta models 

exhibited a higher ERRAT score than ESMFold, and other models indi
cating favorable non-bonded interactions, the overall structural integ
rity of the ESMFold model was superior when evaluated across multiple 
complementary metrics. Specifically, ESMFold achieved the lowest 
MolProbity score, zero steric clashes, and the highest QMEANDisCo 
score, reflecting excellent stereochemical quality and global consis
tency. In contrast, the slightly higher ERRAT score of C-I-TASSER, D-I- 
TASSER, and Robetta models was balanced by its moderate clash score 

Fig. 1. Structural assessment of α-gliadin using multiple prediction models and molecular dynamics simulations. (A) Rg and (B) RMSD of α-gliadin predicted by eight 
structure prediction tools. Bars represent mean values (in nm), with error bars indicating standard deviations over 100 ns MD simulations. (C) Probability distri
butions of RMSD for α-gliadin in ethanol–water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH), based on 1 μs MD simulations in two independent replicas. 
Annotated mean RMSD values ± standard deviations highlight the conformational stability and solvent-dependent structural variability of α-gliadin. “XEtOH” in
dicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v.
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and lower QMEANDisCo value, suggesting local inconsistencies despite 
reliable non-bonded interactions. These results emphasize that no single 
quality metric fully determines model reliability; rather, combined 
evaluation across metrics provides a more accurate assessment.

Considering Rg, RMSD, and overall structural quality metrics, 
ESMFold (AI-based) and C-I-TASSER (template-based) emerged as top 
performers, balancing compactness, stability, and structural reliability. 
Zero Clash Score and high QMEANDisCo score of ESMFold model indi
cate a highly refined structure, while high ERRAT score and reasonable 
stereochemistry of the C-I-TASSER model make it the most reliable 
among template-based methods. In contrast, low ERRAT score of 
DeepFold model suggests potential structural inaccuracies despite 
minimal clashes, and high ERRAT score of the Robetta model is offset by 
the presence of steric clashes. Therefore, the ESMFold model was 
selected for extended simulations due to its lowest MolProbity score, 
absence of steric clashes, and highest QMEANDisCo score, demon
strating an optimal balance of compactness, stability, and accuracy 
during initial refinement.

3.2. Conformational stability and compactness in ethanol-water mixtures

To ensure comprehensive exploration of the conformational space of 
the refined α-gliadin model, we conducted extensive MD simulations, 
each lasting 1 μs and performed in two replicas for every solvent con
dition. This approach allowed the protein structure ample time to relax 
from its initial predicted conformation and to effectively sample the 
equilibrium conformational ensemble under varying ethanol concen
trations (0 %, 30 %, 70 %, and 100 % v/v EtOH). The primary goal was 
not only to assess the stability of the model but also to characterize the 
range of conformations accessible to α-gliadin in different solvent en
vironments. Conformational stability was evaluated using RMSD anal
ysis across the two replicas for each condition. The resulting RMSD 
distributions, shown in Fig. 1C, reveal distinct trends as ethanol con
centration increases. In pure water (0 % EtOH), the mean RMSD across 
replicas is 1.05 ± 0.18 nm, with individual replica values of 1.06 nm and 
1.04 nm, indicating high stability and minimal variability (standard 
deviation of 0.01 nm). This suggests that the dominant conformational 
states are well-sampled within the 1 μs timescale. At 30 % EtOH, the 
mean RMSD decreases to 0.61 ± 0.19 nm (replica values: 0.68 nm and 
0.54 nm), reflecting consistent structural behavior and low variability. 
At 70 % EtOH, the mean RMSD rises slightly to 1.10 ± 0.20 nm (replicas: 
1.08 nm and 1.11 nm), yet variability between replicas remains minimal 
(standard deviation of 0.02 nm), indicating that the system maintains a 
stable conformational state even at this higher ethanol concentration. In 
pure ethanol (100 % EtOH), the mean RMSD is 0.79 ± 0.16 nm, with 
replica-specific values of 0.75 nm and 0.82 nm, showing moderate 
variability (standard deviation of 0.04 nm). These RMSD results suggest 
that the α-gliadin structure remains relatively stable across a wide range 
of ethanol concentrations, with RMSD values ranging from 0.61 to 1.10 
nm. This indicates that α-gliadin can maintain its conformational sta
bility despite significant changes in solvent composition.

To gain deeper insights into the compactness of the α-gliadin 

structure across varying ethanol concentrations (0 %, 30 %, 70 %, and 
100 % v/v EtOH), we analyzed the Rg values and its corresponding free 
energy profile, as shown in Fig. 2A. In pure water (0 % EtOH), the 
average Rg is 2.397 ± 0.137 nm, with replica-specific values of 2.424 
nm and 2.369 nm, indicating that α-gliadin maintains a relatively 
compact structure with moderate fluctuations. At 30 % EtOH, the Rg 
increases to 2.533 ± 0.044 nm (replica values: 2.511 nm and 2.555 nm), 
suggesting minimal variability and a slight expansion. At 70 % EtOH, the 
Rg rises further to 2.639 ± 0.113 nm, with replica-specific values of 
2.616 nm and 2.662 nm, reflecting increased structural variability. In 
pure ethanol (100 % EtOH), the Rg reaches 2.645 ± 0.105 nm (replicas: 
2.628 nm and 2.661 nm), indicating that α-gliadin adopts a notably 
expanded conformation. Overall, the trend of increasing Rg with higher 
ethanol concentrations (Fig. 2B) demonstrates that α-gliadin progres
sively adopts a less compact structure in ethanol-rich environments. This 
observation aligns well with previous experimental and computational 
studies, which report that α-gliadin, like α-zein (another prolamin in 
maize), loses compactness and assumes an extended conformation in 70 
% aqueous ethanol (Li et al., 2012; Shewry & Tatham, 1997; Tatham & 
Shewry, 1985; Yu, Xu, et al., 2023). It also suggests that our simulations 
capture realistic solvent-induced conformational changes. The observed 
expansion may be attributed to the interaction of ethanol with hydro
phobic residues, which disrupts the tertiary structure of protein by 
exposing nonpolar side chains and weakening hydrophobic packing 
(Feng et al., 2021, 2022). Additionally, ethanol competes with water for 
hydrogen bonding sites, thereby reducing the stabilizing intramolecular 
hydrogen bonds and destabilizing the native fold (Dixit et al., 2002; 
Tolmachev et al., 2023). Moreover, the reliability of our simulation re
sults is strongly supported by their agreement with experimental ob
servations from circular dichroism and infrared spectroscopy studies 
that report ethanol-driven increases in α-helical content and molecular 
expansion of gliadins (Li et al., 2012; Shewry & Tatham, 1997; Tatham 
& Shewry, 1985; Yu, Xu, et al., 2023). This concordance with experi
mental data provides key validation that our MD simulation approach 
accurately captures the solvent-dependent conformational behavior of 
α-gliadin, despite the complexity of ethanol-water mixtures.

3.3. Residual fluctuations in ethanol environments

To further investigate the residue-level flexibility of α-gliadin, we 
analyzed the Root Mean Square Fluctuation (RMSF) across all solvent 
conditions (Fig. S5). A closer examination of RMSF data reveals an 
interesting pattern: at all ethanol concentrations except for 100 %, the 
segment of α-gliadin spanning residues Phe238 to Glu257 consistently 
display elevated RMSF values. The increased flexibility observed in this 
segment, which is rich in specific residues such as glutamine, likely 
arises from reduced conformational constraints and the disruptive effect 
of ethanol on hydrophobic interactions. These interactions typically 
contribute to the stability and rigidity of protein structures. Interest
ingly, when the ethanol concentration reaches 100 %, the fluctuations in 
this region decrease markedly. Specifically, the residues Glu240 to 
Glu244 exhibit the highest RMSF values within this segment, but these 

Table 1 
Assessment of structural quality in α-gliadin protein models through molprobity, clash, ERRAT, ProSA, Ramachandran favored, Ramachandran outliers, and 
QMEANDisCo global scores.

Prediction Methods MolProbity Score Clash Score ERRAT ProSA Ramachandran QMEANDisCo Global

Favored Outliers

AlphaFold 1.28 0.82 63.19 − 5.83 91.97 0.73 0.32 ± 0.05
C-I-TASSER 1.81 1.03 70.40 − 5.41 85.40 2.92 0.35 ± 0.05
DeepFold 1.58 0.62 49.10 − 5.56 87.23 0.73 0.34 ± 0.05
D-I-TASSER 2.04 1.44 74.39 − 5.70 82.85 4.01 0.33 ± 0.05
ESMFold 1.26 0.00 66.31 − 7.17 91.61 0.73 0.54 ± 0.05
I-TASSER 2.09 1.65 69.58 − 4.27 83.21 4.01 0.29 ± 0.05
OmegaFold 1.54 0.21 67.90 − 5.90 89.42 0.73 0.32 ± 0.05
Robetta 1.72 1.24 76.39 − 6.69 89.42 1.09 0.36 ± 0.05
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values are now reduced to 0.5–0.7 nm, compared to higher fluctuations 
at lower ethanol concentrations. This suggests that in pure ethanol, the 
protein backbone in this region becomes more stabilized, possibly due to 
reduced competition with water for hydrogen bonding or a collapse of 
the protein into a more compact conformation under these solvent 
conditions. In addition, the regions spanning residues Gln49 to Tyr75 
and Pro65 to Pro95 exhibit pronounced fluctuations at higher ethanol 
concentrations, particularly at 70 % and 100 % ethanol. These segments 
are notably rich in proline and glutamine residues. Proline is well known 
for introducing kinks and disrupting regular secondary structures, while 
polar side chains of glutamine are highly solvent-accessible and prone to 
forming transient hydrogen bonds with the surrounding ethanol and 
water molecules. The abundance of these residues likely contributes to 
the increased flexibility observed in these regions, as the disruption of 
hydrophobic interactions and hydrogen bonding by ethanol further 
amplifies their dynamic behavior.

In contrast, the region from residues Gln135 to Gln225 remains 
relatively stable across all solvent conditions. The RMSF values in this 
segment range from 0.18 nm to 0.44 nm, with an average fluctuation of 
0.20–0.30 nm, indicating a consistently rigid structure. This stability is 

likely attributed to the presence of charged residues such as lysine and 
aspartic acid, as well as cysteine, which can form stabilizing electrostatic 
interactions and disulfide bonds, respectively. These interactions 
enhance local rigidity and help maintain the structural integrity of this 
segment even in the presence of high ethanol concentrations. Taking 
together, these findings highlight the heterogeneous nature of α-glia
din’s response to solvent environment: while proline- and glutamine- 
rich regions become highly flexible in ethanol-rich conditions, do
mains stabilized by electrostatic and covalent interactions retain their 
rigidity, contributing to the overall resilience of the core structure of 
protein.

These findings have important implications for the functional role of 
α-gliadin within gluten. The observed decrease in compactness of 
α-gliadin in ethanol-water mixtures likely enhances its solubility, a 
critical property leveraged during gluten extraction and dough prepa
ration, where such solvents are routinely employed to selectively isolate 
gliadin fractions from other gluten components. Increased solubility in 
these mixtures facilitates the separation and purification of gliadins, 
which are essential for imparting extensibility and viscosity to dough. 
However, this structural expansion may have a downside, particularly in 

Fig. 2. (A) Free energy landscapes of α-Gliadin as a function of Rg in ethanol-water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH) from 1 μs MD simulations, 
showing up to two replicas with mean ± SD. (B) Mean Rg values with standard deviations plotted against ethanol concentration, summarizing conformational trends 
across solvent conditions. “XEtOH” indicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v.
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the context of celiac disease. The more extended conformation of 
α-gliadin in ethanol-rich environments could increase the accessibility of 
immunogenic epitopes. The regions spanning residues Gln49-Tyr75 and 
Pro65-Pro95 are of particular interest due to their potential immuno
genicity. Notably, the segment from residues Pro65 to Pro95 substan
tially overlaps with the well-characterized 33-mer peptide 
(LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF), which contains mul
tiple overlapping T-cell stimulatory epitopes recognized by HLA-DQ2/ 
DQ8-restricted T cells in individuals with celiac disease (de Groot 
et al., 2020; Kim et al., 2004; Shan et al., 2002). Both regions are rich in 
proline and glutamine residues, a hallmark of immunogenic gliadin se
quences, and contain motifs such as PQPQLPY and QLQPFPQPQ that are 
known to trigger immune responses.

3.4. Solvent accessibility and protein-solvent interactions

The exposure of α-gliadin to solvents across varying ethanol 

concentrations (0 %, 30 %, 70 %, and 100 % v/v EtOH) was evaluated by 
calculating the SASA, offering insights into protein-solvent interactions 
and their influence on structural dynamics. Fig. 3A-3B illustrates the 
SASA distributions for the entire protein and its hydrophobic residues, 
averaged over two replicas per condition. In pure water (0 % EtOH), the 
average SASA is 192.68 ± 8.39 nm2, indicating a relatively compact 
structure with limited solvent exposure. This aligns with the low Rg of 
2.397 nm. At 30 % EtOH, the mean SASA increases to 219.19 ± 2.39 
nm2, suggesting increased solvent accessibility as the protein begins to 
expand. This corresponds with an increased Rg of 2.533 nm and higher 
flexibility in regions such as residues Glu240 to Glu244. The enhanced 
solvent exposure and flexibility observed in segments like Gln227- 
Ala261 are largely due to disruption of intramolecular hydrogen 
bonding and increased ethanol interaction; this occurs with only a minor 
change in the overall salt bridge number (from 3.45 ± 1.01 at 0 % to 
3.18 ± 1.05 at 30 % ethanol), which is discussed further in Section 3.4.2. 
The SASA peaks at 70 % EtOH, with a mean of 238.31 ± 5.56 nm2. This 

Fig. 3. Kernel density estimations of (A) SASA of the entire protein and (B) SASA of hydrophobic residues, as well as kernel density estimations of number of (C) 
water molecules and (D) ethanol molecule distributed within 0.6 nm of the protein surface. Panel (E) shows the number of hydrogen bonds (H-bonds) formed 
between α-gliadin and water (blue) or ethanol (red) in ethanol-water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH) over 1 μs MD simulations. “XEtOH” indicates 
the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v. Each curve represents the average value across two replicas per solvent 
condition, with mean ± standard deviation annotated above the distribution peaks. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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corresponds to an increased Rg of 2.639 nm and significant flexibility in 
residues Gln49 to Tyr75, as well as Glu240 to Glu244 (though with 
slightly decreased flexibility compared to 30 % EtOH). In pure ethanol 
(100 %), the mean SASA increases further to 241.60 ± 3.79 nm2, indi
cating maximal solvent exposure and the lowest variability among 
replicates. This is consistent with an expanded protein conformation 
(higher Rg) and heightened flexibility in the Pro65 to Pro95 region. 
However, the fluctuation in residues Glu240 to Glu244 decreases, sug
gesting a stabilized yet expanded conformation. These findings indicate 
that at higher ethanol concentrations (70 % and 100 %), hydrophobic 
interactions within α-gliadin are maximally disrupted, resulting in large 
exposure of hydrophobic residues to the solvent.

For the hydrophobic residues specifically, the mean SASA in 0 % 
EtOH is 179.80 ± 2.28 nm2, showing limited exposure in a water- 
dominated environment. At 30 % EtOH, it increases to 185.59 ± 1.38 
nm2, and at 70 % EtOH, it reaches 191.35 ± 2.18 nm2, reflecting a 
progressive exposure of hydrophobic regions (e.g., tyrosine, isoleucine) 
as ethanol disrupts their burial within the protein core, corroborating 
the RMSF increase in flexible regions. In 100 % ethanol, mean SASA for 
hydrophobic residues climbs to 202.63 ± 2.81 nm2, representing 
maximum exposure. This is likely due to ethanol’s superior ability to 
solvate hydrophobic surfaces, which aligns with overall SASA trend, and 
the expanded protein structure indicated by Rg and RMSF data. 
Collectively, these SASA trends reinforce the observation that ethanol- 
rich solvents drive structural expansion in α-gliadin by competing 
with water for hydrogen bonding and interacting with hydrophobic 
residues, thereby disrupting the tertiary structure of protein. The 
increased solvent accessibility observed at 70 % and 100 % ethanol for 
both total protein and its hydrophobic residues likely enhance the sol
ubility of α-gliadin, thereby facilitating its extraction during gluten 
processing. The progressive exposure of hydrophobic residues with ris
ing ethanol concentrations indicates a transition from a compact, water- 
stabilized state to a more solvent-exposed, ethanol-stabilized confor
mation. This structural shift may significantly influence the functional 
properties of α-gliadin in high-ethanol environments, such as those 
encountered during food processing.

3.4.1. Hydrogen bonding analysis
To further elucidate protein-solvent interactions, we calculated both 

the number of hydrogen bonds (H-bonds) formed between α-gliadin and 
water or ethanol, as well as the number of water and ethanol molecules 
within 0.6 nm of the protein surface. These analyses provide insight into 
the solvent distribution around α-gliadin and are summarized in Fig. 3C-
3E. In pure water (0 % EtOH), the number of protein-water H-bonds is 
709.21 ± 15.81, while protein-ethanol H-bonds are 0 because ethanol is 
not present, suggesting a water-dominated H-bonding network with 
polar residues, with 2792.54 ± 118.32 water molecules within 0.6 nm. 
At 30 % EtOH, the number of protein-water H-bonds decreases to 445.15 
± 31.66, and protein-ethanol H-bonds is 207.38 ± 21.96, indicating a 
shift in solvent interactions, with 1533.09 ± 134.55 water and 576.82 
± 37.08 ethanol molecules. This corresponds to a 44 % reduction in 
water molecules relative to 0 % EtOH, as ethanol begins to solvate the 
protein, consistent with the SASA increase. At 70 % EtOH, protein-water 
H-bonds further decrease to 405.31 ± 10.69, while protein-ethanol H- 
bonds slightly decreased yet remain stable at 194.84 ± 10.69, with 
1256.77 ± 55.48 water and 676.49 ± 20.70 ethanol molecules. This 
stability arises might be due to a dynamic competition between ethanol 
and residual water molecules near the protein surface, creating a tran
sitional solvation environment. Such competition moderates the avail
ability of solvent molecules for hydrogen bonding, resulting in 
fluctuating but overall maintained protein-ethanol hydrogen bonds. 
This reflects a 54.8 % reduction in water molecules compared to 0 % 
EtOH (a 10.8 % additional reduction from 30 % EtOH), with ethanol 
playing a larger role in solvation, aligning with the peak SASA (238.31 
nm2) and maximum structural expansion (higher Rg). The broader 
fluctuation range in protein-water hydrogen bonds at 70 % EtOH reflects 

the transitional solvent composition where water and ethanol dynami
cally compete to solvate the protein. This competition, combined with 
increased conformational flexibility at this specific concentration, pro
duces greater variability in hydrogen bonding compared to more static 
solvent environments at lower or higher ethanol concentrations. In pure 
ethanol (100 % EtOH), protein-water H-bonds drop to 0 because water is 
absent, while protein-ethanol H-bonds increase sharply to 461.10 ±
12.27, with 1058.00 ± 20.54 ethanol molecules, indicating that ethanol 
fully solvates the protein, stabilizing the expanded conformation such as 
region Phe238 to Glu257. This shift in H-bonding and distribution of 
water and ethanol within 0.6 nm of the protein correlates with the 
increased exposure of hydrophobic residues (SASA 202.63 nm2) and the 
flexibility observed in regions like residues Gln49 to Tyr75 and Pro65 to 
Pro95, suggesting that ethanol H-bonds with polar groups compensate 
for the loss of water H-bonds, maintaining the solvent-exposed state of 
protein.

Due to the higher H-bonding capability of water (up to four H-bonds 
per molecule compared to ethanol, which can form two), the number of 
protein-water H-bonds is significantly higher compared to protein- 
ethanol H-bonds at 30 % and 70 % EtOH. At 30 % EtOH, water mole
cules still dominate (70 % by volume, molar ratio ~ 87:13 water: 
ethanol), with 1558.08 ± 142.22 water molecules within 0.6 nm pref
erentially forming H-bonds with polar residues due to their stronger H- 
bonding potential. Even at 70 % EtOH (30 % by volume, molar ratio ~ 
57:43 water: ethanol), water remains a significant component, main
taining 405.31 protein-water H-bonds and 1256.77 ± 55.48 water 
molecules within 0.6 nm. Ethanol, while capable of H-bonding, also 
solvates hydrophobic residues, as seen in the SASA increase for hydro
phobic residues (from 179.80 nm2 at 0 % to 191.35 nm2 at 70 % EtOH) 
and the presence of 676.49 ± 20.70 ethanol molecules within 0.6 nm at 
70 % EtOH, reducing its competition for H-bonding sites. Additionally, 
the semi-compact structure of the protein at these concentrations may 
limit the exposure of additional H-bonding sites, preserving the domi
nance of water until 100 % EtOH, where ethanol fully replaces water, 
forming 461.10 H-bonds with 1058.00 ± 20.54 ethanol molecules. 
These H-bonding dynamics support the observed structural changes, 
enhancing solubility in ethanol-rich mixtures.

3.4.2. Salt bridge analysis
To evaluate how ethanol concentration affects the structural stability 

of α-gliadin, we analyzed salt bridge interactions between charged res
idues within 4 Å under various solvent conditions, averaging results over 
two replicas for reliability (Fig. 4 and Table S5). At 0 % ethanol, the 
average number of salt bridges was 3.45 ± 1.01, with Arg164-Asp165 
being the most prominent (47.46 %), followed by Arg277-Glu274 
(40.77 %) and Arg205-Glu202 (11.70 %). The average distance be
tween these interacting residues was 3.16 ± 0.41 Å. When the ethanol 
concentration increased to 30 %, the number of salt bridges decreased 
slightly to 3.18 ± 1.05, confirming only a minor reduction consistent 
with the modest structural expansion described in the SASA analysis 
(section 3.4.1). The Arg164-Asp165 pair become even more dominant 
(62.01 %), while Arg277-Glu274 and Arg205-Glu202 accounted for 
25.33 % and 12.67 % of interactions, respectively. The average inter- 
residues distance also slightly decreased to 3.12 ± 0.35 Å, indicating 
that although the protein becomes more solvent-accessible, its major 
electrostatic contacts were retained. At 70 % ethanol, the number of salt 
bridges declined marginally to 3.12 ± 0.87, with Arg164-Asp165 
remaining the most prevalent (52.51 %), followed by Arg277-Glu274 
(32.25 %) and Arg205-Glu202 (15.24 %), and the average distance 
increased slightly to 3.19 ± 0.39 Å. This gradual changes in salt bridge 
count and distribution up to 70 % ethanol supports the notion that the 
early conformational expansion of α-gliadin occurs primarily through 
hydrogen bond disruption and increased ethanol-mediated solvation, 
rather than through loss of key electrostatic interactions. Notably, at 
100 % ethanol, the number of salt bridges rose significantly to 6.99 ±
0.99, accompanied by a marked shift in dominant interactions: Arg205- 
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Glu202 became the most prevalent (50.06 %), surpassing Arg277- 
Glu274 (27.30 %) and Arg164-Asp165 (22.00 %). The average dis
tance between residues also tightened to 3.09 ± 0.40 Å. The increasing 
dominance of Arg205-Glu202-from 11.70 % at 0 % ethanol to 50.06 % 
at 100 % alongside the relative decrease or shift in Arg164-Asp165 and 
Arg277-Glu274, suggests an ethanol-driven reorganization of electro
static interactions. This trend, coupled with the overall increase in the 
number of salt bridges from 3.45 to 6.99, reflects a transition from 
water-mediated stability to ethanol-stabilized contacts. The shift in 
dominant salt bridge pairs and the increased number of interactions at 
100 % ethanol indicate that ethanol promotes the formation of new 
electrostatic contacts, thereby stabilizing the extended structure of 
α-gliadin.

3.5. Secondary structure evolution

The evolution of secondary structure of α-gliadin was examined 
across ethanol concentrations (0 %, 30 %, 70 %, and 100 % v/v EtOH) to 
elucidate solvent-induced structural changes. The secondary structure 
analysis presented is from one representative replicate, selected for 
clarity in visualization (Fig. S6). This replicate reflects the overall 
behavior observed across all simulation replicates, as evidenced by 
consistent structural stability and other metrics. In pure water (0 % 
ethanol), α-gliadin exhibits a secondary structure composition of 
approximately 37.0 % α-helix, 2.0 % β-sheet, 11.0 % β-turn, and 50.0 % 
random coil. This indicates a partially ordered structure with significant 
helical and disordered regions, and minimal β-sheet content. These re
sults closely align with experimental circular dichroism studies, which 
report that gliadins in aqueous solution typically have 30–40 % α-helix, 
45–55 % coil, and low β-sheet content (Shewry & Tatham, 1997; Tatham 
& Shewry, 1985; Urade et al., 2018).

At 30 % EtOH, secondary structure of α-gliadin shows subtle but 
meaningful changes: the α-helix fraction increases slightly to 37.5 %, 
β-sheet content decreases to 1.5 %, β-turns rise to 11.5 %, and random 
coil content drops to 49.5 %. These shifts suggest the onset of structural 
rearrangement as the protein begins to respond to the presence of 
ethanol. At 70 % EtOH, α-gliadin exhibits a further increase in α-helix 
content to 38.0 %, while β-sheet content remains low at 1.5 %. The 
fraction of β-turns decreases slightly to 11.0 %, and the coil content 
remains steady at 49.5 %. These results suggest stabilization of helical 
structure at intermediate ethanol concentrations, even as the protein 
undergoes significant expansion, as indicated by increased Rg and SASA. 
These results are consistent with experimental CD studies, which show 
that gliadins maintain or slightly increase α-helix content and remain 
largely disordered in 50–70 % ethanol (Shewry & Tatham, 1997; 
Tatham & Shewry, 1985).

In pure ethanol (100 % EtOH), the helix fraction reaches 38.5 %, 
β-sheet remains at 1.5 %, β-turns rise to 11.5 %, and coil content de
creases to 48.5 %, indicating a slightly more ordered and stabilized 
helical structure in a fully ethanol environment. The gradual increase in 
helical content (from 37.0 % to 38.5 %) with rising ethanol 

concentration suggests that ethanol promotes helical stability, likely by 
disrupting water-mediated hydrogen bonds and enhancing intra
molecular hydrogen bonding within the protein. The minimal change in 
β-sheet content (2.0 % to 1.5 %) indicates that β-sheet formation is not 
favored in ethanol, consistent with gliadin’s intrinsic structural ten
dencies. Meanwhile, the slight fluctuation in β-turns (from 11.0 % to 
11.5 %) reflects local structural rearrangements in flexible regions as the 
protein adapts to the solvent. The decrease in coil content (from 50.0 % 
to 48.5 %) further supports the notion of an expanded yet more stabi
lized protein conformation at 100 % ethanol.

3.6. Protein solvation structure and thermodynamics

To understand how the solvent environment affects the behavior of 
α-gliadin, we examined its local solvation structure and thermody
namics for one of the replicas of 1 μs MD simulation trajectories. Given 
the irregular shape of protein, we utilized Minimum-Distance Distribu
tion Functions rather than standard Radial Distribution Functions to 
more accurately characterize how water and ethanol molecules arrange 
themselves around the protein (Figs. 5 and S7). The MDDF results 
revealed distinct solvation patterns. At 0 % EtOH, water forms two 
pronounced layers around the protein, with peaks at approximately 1.9 
Å (height: 1.49) and 2.6 Å (height: 1.51). This structured hydration shell 
contributes to the stability and compactness of α-gliadin (Fig. 5A-5B). 
Upon increasing to 30 % EtOH, the water peak at 1.9 Å diminishes to a 
height of 1.18, indicating that ethanol begins to displace water from the 
protein surface. Ethanol itself displays a sharp peak at 2.3 Å (height: 
4.51), suggesting preferential association with less polar or hydrophobic 
regions, which may initiate partial unfolding of the protein. At 70 % 
EtOH, the water peak at 1.9 Å becomes more pronounced (height: 2.05), 
likely reflecting water clustering around remaining polar or charged 
residues as bulk water is depleted. A broader water peak at 4.5 Å (height: 
1.19) further supports this selective retention. The peak height of 
ethanol decreases, indicating competition between the two solvents as 
the protein expands. In 100 % EtOH, the ethanol peak shifts to 1.9 Å 
(height: 3.2) but appears broader and less intense, reflecting weaker and 
less specific interactions with the protein surface compared to water.

To visualize the residue-level specificity of solvent interactions, we 
analyzed MDDF densities for individual α-gliadin residues (Fig. S7). In 
pure water, water density was lowest around residues 151–225, a region 
enriched in hydrophobic and aliphatic residues (e.g., isoleucine, leucine, 
valine), suggesting these segments are relatively buried and adopt stable 
secondary structure with limited solvent exposure. At 30 % EtOH, the 
largest reductions in water density occurred in residues 1–45 and 
151–225, consistent with the distribution observed under aqueous 
conditions. Both regions are dominated by hydrophobic and aliphatic 
side chains, while additional changes in 258–268 and 300–307 reflect 
increased solvent accessibility as the protein expands. Ethanol density 
increased notably in residues 76–150, a proline- and glutamine-rich 
segment, indicating preferential solvation of flexible, disordered re
gions. At 70 % EtOH, this pattern persisted, with water remaining near 

Fig. 4. Effects of ethanol concentration on salt bridge formation and residue pair contributions. (A) Average number of salt bridges, with error bars indicating 
standard deviations, and (B) relative contributions of key residue pairs to the total number of salt bridges at 0 %, 30 %, 70 %, and 100 % v/v ethanol.
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polar and charged residues and ethanol accumulating around proline- 
and glutamine-rich stretches, consistent with solvent competition for 
flexible and hydrophobic regions. In 100 % EtOH, high ethanol density 
was observed in the majority of N-terminal residues 1–45), proline- and 
glutamine-rich regions (57–67, 76–97, 118–157, 178–188, 219–276), 
and the C-terminal (298–307), corresponding to exposed hydrophobic 
and flexible polar residues. This residue-dependent redistribution of 
solvent reflects ability of ethanol to displace water, and preferentially 
solvate nonpolar and disordered surfaces, in line with established 
models of protein-solvent interactions (Prabhu & Sharp, 2006; Tima
sheff, 2002).

To quantify solvent preference, we calculated integrals (Fig. 5C-5D). 
In pure water, the KB integral for water starts at around − 30 mol⋅L− 1 

and levels off at − 26 mol⋅L− 1 at 15 Å, indicating strong water enrich
ment and stabilization of the protein. At 30 % EtOH, the KB integral for 
water becomes more negative (− 45 mol⋅L− 1), reflecting increased 
exclusion of water from the protein’s vicinity as ethanol displaces it. 
Simultaneously, the KB integral for ethanol shifts from − 43 mol⋅L− 1 to 
about +5 mol⋅L− 1 at longer distances, indicating ethanol’s increasing 
association with the protein, likely due to greater exposure of hydro
phobic regions. At 70 % EtOH, the KB integral for water drops sharply to 
− 90 mol⋅L− 1 initially and then settles at − 41 mol⋅L− 1, while ethanol’s 
integral moves from − 45 to − 30 mol⋅L− 1, suggesting ongoing compe
tition between the solvents, with water preferentially stabilizing polar 
regions. In pure ethanol, the KB integral for ethanol levels out at − 24 
mol⋅L− 1, indicating a weaker, less specific interaction with the protein, 
as ethanol is less effective at stabilizing charged or polar residues 
compared to water. These findings demonstrate that the solvation shell 
around α-gliadin is dynamically remodeled as ethanol concentration 
increases. Water forms a structured, stabilizing layer that maintains 
protein compactness, while ethanol progressively disrupts this shell, 
leading to a looser and less stable environment.

3.7. Conformational dynamics

PCA was employed to elucidate the dominant modes of conforma
tional variability in α-gliadin across ethanol-water mixtures. The anal
ysis focused on the first two principal components (PC1 and PC2), which 
together captured a substantial proportion of the total variance (Fig. 6). 
In pure water (0 % EtOH), the conformational landscape was notably 
rugged in replica 1, displaying four distinct minima (PC1: − 3.26 to 
− 7.91, PC2: − 4.40 to 2.81), each corresponding to well-sampled regions 
of the trajectory. In contrast, replica 2 revealed a single dominant 
minimum, indicating some variability in sampling but overall conver
gence toward major conformational states at low ethanol concentra
tions. The variance explained by PC1 and PC2 in water (49–47 % and 
13–15 %, respectively) demonstrates that these axes effectively capture 
most of the large-scale motions.

At 30 % EtOH, the conformational space sampled by α-gliadin 
became more structured: replica 1 exhibited two closely spaced minima 
alongside a marked increase in variance explained by PC1 (76.7 %), 
while replica 2 revealed four closely spaced minima with PC1 and PC2 
explaining 58.9 % and 16.2 % of the variance, respectively. This sug
gests a solvent-driven shift toward a more restricted conformational 
ensemble dominated by specific collective motions. At 70 % ethanol, the 
protein exhibited a more complex and heterogeneous landscape, with 
three distinct minima in both replicas and a lower proportion of variance 
captured by PC1 (36–39 %), reflecting increased conformational di
versity and the presence of multiple accessible states. In 100 % EtOH, 
the results diverged between replicas: replica 1 exhibited a single deep 
minimum, while replica 2 sampled four well-separated minima, with 
PC1 and PC2 together accounting for over 54 % of the variance. These 
findings suggest that high ethanol content allows α-gliadin to access a 
broader range of conformations, likely due to the disruption of stabi
lizing intramolecular interactions and the formation of new electrostatic 

us us

Fig. 5. Solvent organization around α-gliadin across ethanol–water mixtures. (A, B) Minimum Distance Distribution Functions (MDDF) of ethanol and water, 
respectively, relative to the protein at ethanol concentrations of 0 %, 30 %, 70 %, and 100 % (v/v). “XEtOH” indicates the ethanol mole fraction; values in pa
rentheses represent ethanol concentration as % v/v. (C, D) Corresponding Kirkwood–Buff integrals (KBIs) for ethanol and water, quantifying preferential accu
mulation or exclusion of solvent species near the protein surface.
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contacts, as evidenced by the emergence of additional salt bridges. This 
shift ultimately stabilizes the extended structure of α-gliadin in ethanol- 
rich environments.

To further interpret these global motions, the global minimum 
structures identified for each condition from one of the replicas were 
superimposed, using the global minimum structure obtained at 0 % 
EtOH as the reference. Per-residue RMSD values were then mapped onto 

the B-factor field and visualized with a blue-white-red gradient, where 
red highlights regions of highest structural divergence (Fig. 7). The 
overall RMSDs between global minima were 11.56 Å (30 % EtOH), 
13.28 Å (70 % EtOH), and 10.72 Å (100 % EtOH), indicating significant 
conformational changes, with the largest deviation observed at 70 % 
ethanol. Residue-specific RMSD analysis highlighted pronounced flexi
bility in several regions (Fig. S8), most notably the C-terminal segment 

Fig. 6. (A) Free energy landscapes of α-gliadin derived from the first two principal components (PC1 and PC2) from both replicas of 1 μs MD simulations in ethanol- 
water mixtures (0 %, 30 %, 70 %, and 100 % v/v). “XEtOH” indicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v. 
Colour gradients indicate free energy (kcal/mol), and red dots mark the energy minima representing predominant conformational states. (B) Representative α-gliadin 
structures at the global minima, extracted from the free energy landscapes for each solvent condition. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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(Gln227-Ala261; 8–33 Å), where Ser234, Leu233, and Gln235 exhibited 
extreme deviations, suggestive of a disordered or solvent-exposed loop. 
The proline- and glutamine-rich segment Pro64-Leu78 (10–28 Å) also 
displayed high RMSDs, with Gln72 and Ser71 among the most flexible 
residues. Additionally, the region spanning Tyr121-Gln136 (12–27 Å) 
showed substantial deviations, particularly at Pro127, Ile128, Ser129, 
and Gln130, indicating another flexible segment sensitive to ethanol 
concentration, which displayed marked increases in both RMSD and 
RMSF. The N-terminal region (Met1-Pro30; 5–16 Å) was comparatively 
less flexible. Interestingly, the lower overall RMSD in 100 % ethanol 
compared to 70 % ethanol may reflect a stabilization effect, possibly due 
to dehydration or altered hydrophobic interactions. These results 
demonstrate that ethanol concentration profoundly modulates the 
conformational landscape of α-gliadin, with specific regions exhibiting 
pronounced structural variability likely driven by disrupted hydrogen 
bonding and altered solvent interactions. These findings are consistent 
with RMSD, Rg, and RMSF analyses, which indicated increased flexi
bility, expansion, and solvent exposure in ethanol-rich environments. 
Importantly, the ability of α-gliadin to sample diverse conformational 
states in ethanol may have implications for its solubility, its functional 
properties in food matrices, and the accessibility of immunogenic 
epitopes.

4. Conclusion

This study presents a comprehensive, multi-scale analysis of struc
tural dynamics of α-gliadin in ethanol-water mixtures (0 %, 30 %, 70 %, 
and 100 % v/v), integrating advanced structure prediction, MD simu
lations, and both residue-level and global conformational analyses. 
Notably, this work is the first to quantitatively combine state-of-the-art 
structure prediction with microsecond-scale MD simulations to sys
tematically probe the behavior of α-gliadin across a full range of ethanol 
concentrations. Comparative model assessment revealed that ESMFold 
(an AI-based method) and C-I-TASSER (a template-based method) pro
duced more compact and stable α-gliadin structures, while several other 
AI-driven models tended to favor more extended, flexible 

conformations. This conclusion is supported by Rg and RMSD, as well as 
structural quality metrics, and aligns with experimental measurements 
of gliadin compactness in aqueous solution. After initial refinement and 
evaluation, the ESMFold model was selected for extended simulations 
due to its optimal balance of structural compactness and overall quality.

Our extensive MD simulations reveal that α-gliadin maintains 
remarkable conformational stability across all the solvent conditions. 
However, there is a clear trend toward expansion and increased solvent 
accessibility as ethanol concentration rises. Residue-level analyses 
reveal that proline- and glutamine-rich regions (Pro64-Leu78, Tyr121- 
Gln136, Gln227-Ala261) are the most dynamic, whereas the central 
region remains consistently rigid. Residues like Ser234, Leu233, and 
Gln235 exhibit extreme fluctuations, suggesting these segments act as 
disordered or solvent-exposed loops. In contrast, the central region 
(Gln135-Gln225) remains consistently rigid, stabilized by charged res
idues (lysine, aspartic acid) and cysteine-mediated disulfide bonds, 
which confer local structural integrity even in ethanol-rich environ
ments. Secondary structure analysis reveals modest stabilization of he
lical content and a reduction in β-sheet content, especially at 
intermediate and high ethanol concentrations. Residue-level analyses 
underscore the heterogeneous flexibility of α-gliadin: proline- and 
glutamine-rich regions become highly dynamic in ethanol-rich envi
ronments, while segments stabilized by electrostatic or covalent in
teractions retain their rigidity. Solvation analyses using MDDF and KD 
integrals demonstrate a clear, residue-dependent remodeling of the 
protein’s hydration shell: water forms a compact, stabilizing layer in 
pure aqueous conditions, while ethanol progressively displaces water 
and preferentially solvates hydrophobic and flexible polar regions. PCA 
provides a global perspective, showing that solvent composition criti
cally shapes the conformational landscape of α-gliadin. Lower ethanol 
concentrations favor compact, convergent conformational basins, 
whereas higher ethanol levels promote greater conformational diversity 
and the sampling of multiple distinct minima. These global motions are 
driven by the same flexible regions identified in RMSF and SASA ana
lyses, highlighting a direct link between local flexibility and large-scale 
structural transitions.

These findings provide deeper insights into the behavior of α-gliadin 
in food processing and potential immunogenicity, offering valuable in
sights for improved gluten extraction and immune responses mitigation 
strategies. Collectively, our results provide new molecular-level insights 
into the solvent-dependent dynamics of α-gliadin, with implications for 
its solubility, functional properties in food processing, and the accessi
bility of immunogenic epitopes relevant to celiac disease. This work not 
only advances our understanding of the structural plasticity of intrinsi
cally disordered food proteins but also establishes a computational 
framework for future studies aimed at modulating gluten protein 
properties for enhanced food functionality and reduced immunoge
nicity. However, the absence of an experimentally determined α-gliadin 
structure and the complexity of real gluten environments beyond 
ethanol-water mixtures introduce certain limitations. Future research 
should focus on integrating experimental data for further refinement, 
exploring other food-relevant solvent conditions, and extending ana
lyses to other gliadin isoforms and glutenin proteins. Such efforts will 
improve our fundamental understanding of gluten behavior, ultimately 
benefiting both food technology and health.
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