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ARTICLE INFO ABSTRACT

Keywords: Understanding the behavior of gliadin in mixed aqueous-organic solvents is vital for food material science. This
o-Gliadin study integrates advanced structure prediction with microsecond-scale molecular dynamics (MD) simulations to
Gluten

explore the conformational and solvation behavior of a-gliadin across ethanol-water mixtures. Our findings
reveal that a-gliadin maintains structural stability across all solvent conditions, with a progressive increase in
molecular expansion at higher ethanol concentrations. Ethanol promotes up to 30 % more salt bridges, enhances
helical content, and reduces p-sheet formation. Residue-level flexibility analysis reveals that specific segments,
such as GIn227-Ala261, Tyr121-GIn136, and the proline- and glutamine-rich region Pro64-Leu78, exhibit higher
fluctuation, suggesting their sensitivity to solvent-induced conformational changes, whereas domains stabilized
by electrostatic and covalent interactions remain rigid (show less fluctuation). Thermodynamic and PCA analyses
highlight stronger protein-solvent interactions and greater conformational diversity at higher ethanol concen-
trations. This work provides a detailed molecular-level quantification of how ethanol modulates o-gliadin

Structure prediction

Molecular dynamics simulation
Solvent behavior

Protein conformation

structure and solvation.

1. Introduction

Wheat gluten proteins are essential for the functional properties of
dough, imparting the viscoelasticity and extensibility that define the
quality of baked goods and other wheat-based products (Shewry et al.,
2002). Gluten consists of two major fractions, gliadins and glutenins.
Among these, a-gliadin, a monomeric protein soluble in aqueous ethanol
and rich in glutamine and proline residues, is a key component influ-
encing behavior of the gluten in various solvent environments, such as
ethanol-water mixtures, commonly encountered in gluten extraction
and processing (Wieser, 2007). The high solubility of gliadins, particu-
larly a-gliadin, in ethanol-water mixtures is a distinguishing biochem-
ical property that underpins their selective extraction from wheat flour
and their functional role in food processing (Tatham & Shewry, 1985).
This selective solubility not only facilitates the separation of gliadins
from glutenins but also highlights the importance of ethanol-water en-
vironments in modulating gliadin structure and function. These solvent
conditions significantly influence the structural properties of gluten,
affecting its ability to form a cohesive network during dough develop-
ment, which is vital for applications in baking and food formulation
(Delcour et al., 2012; Urade et al., 2018). Beyond its role in food
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systems, a-gliadin has biomedical significance, as its glutamine-rich
regions are primary antigens in celiac disease, a chronic autoimmune
disorder affecting approximately 1 % of the global population (Fasano &
Catassi, 2012; Sollid, 2002). Thus, understanding how ethanol-water
mixtures modulate the structure and dynamics of a-gliadin is critical
for both optimizing food processing and mitigating health risks associ-
ated with gluten consumption.

The effect of ethanol-water mixtures on gluten proteins has been
studied extensively through experimental methods, which have
demonstrated that ethanol disrupts intra-protein interactions, leading to
unfolding, increased solvent exposure, and changes in secondary struc-
ture (Tatham & Shewry, 1985). For instance, ethanol has been shown to
reduce hydrogen bonding within the protein while enhancing hydro-
phobic interactions, resulting in a more extended conformation that can
alter solubility and aggregation properties of gluten (Shewry & Belton,
2024). However, experimental techniques such as circular dichroism
and infrared spectroscopy offer limited atomic-level insight into the
interplay between protein-solvent interactions, conformational dy-
namics, and thermodynamic stability (Delcour et al., 2012). Moreover,
due to the lack of an experimentally determined full-length structure for
food proteins, the atomistic understanding of their behavior in different
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solvent environments remains incomplete.

To address these limitations, computational modeling, particularly
MD simulations, has become an increasingly powerful tool for studying
food proteins and peptides at atomic resolution (Kumar, Du, Amacha-
wadi, et al., 2025; Singh et al., 2018; Yu, Li, et al., 2023). MD studies
have been successfully applied to elucidate the solvent effects on protein
folding and dynamics, revealing how co-solvents like ethanol modulate
hydrogen bonding networks, solvation shells, and conformational en-
sembles (Gazi et al., 2023; Nassar et al., 2022). Recent advances in
computational methods, including enhanced sampling techniques, ma-
chine learning, and integrative modeling, have enabled detailed in-
vestigations into the folding, stability, and functional properties of food
proteins and peptides under various processing conditions (Kumar, Du,
Amachawadi, et al., 2025; Kumar, Du, & Li, 2025; Kumar & Sastry,
2021; Yang et al., 2024; Yang, Kumar, Kuang, Li, & Song, 2025; Yang,
Kumar, Kuang, Song, & Li, 2025). In this study, we employ MD simu-
lations to investigate the structural, dynamic, and thermodynamic re-
sponses of a-gliadin in ethanol-water mixtures (0 %, 30 %, 70 %, and
100 % v/v ethanol). Using advanced computational techniques
including Free Energy Landscape (FEL) analysis, Principal Component
Analysis (PCA), Minimum-Distance Distribution Functions (MDDFs),
and Kirkwood-Buff integrals, we characterize the conformational
changes, solvent interactions, and stability of the protein across these
conditions. Our comprehensive approach provides new molecular-level
insights into how ethanol drives structural and conformational changes
in a-gliadin. These findings have direct implications for food material
science, informing how solvent conditions influence gluten functionality
during processing, and also shed light on the exposure of glutamine-rich
epitopes relevant to celiac disease immunogenicity. To our knowledge,
this study provides the first integrated analysis combining advanced
structure prediction with microsecond-scale MD simulations to investi-
gate full-length a-gliadin across graded ethanol-water environments. By
linking atomic-level solvation patterns, conformational energetics, and
domain-specific flexibility, this work offers a deeper mechanistic un-
derstanding of the behavior of gliadin under processing-relevant solvent
conditions that has not been reported previously.

2. Computational details
2.1. Structure prediction of a-gliadin

The study utilized the amino acid sequence of a-gliadin protein
(accession number P18573) from wheat (Triticum aestivum), obtained
from UniProt (https://www.uniprot.org/). The sequence and amino
acid composition of a-gliadin are shown in Table S1. To predict the
secondary structure of a-gliadin, established bioinformatics tools were
employed. Specifically, the NPS@ server was used (Combet et al., 2000),
which integrates algorithms like Garnier-Osguthorpe-Robson (GOR) III
(Gibrat et al., 1987) and ¥-Prediction of Secondary Structure (PHD)
(Rost & Sander, 1993) to assign probabilities for each residue belonging
to a-helices, B-strands, or random coils of a-gliadin. For tertiary structure
prediction, a comprehensive suite of methods was employed, including
deep learning-based methods (AlphaFold, DeepFold, ESMFold, Omega-
Fold, and Robetta), template-based methods (I-TASSER and C-I-
TASSER) and a method combines both neural network-based methods
and template-based approach (D-I-TASSER). Each method is accompa-
nied by a link to access relevant information or resources, as provided in
Table S2. AlphaFold, a deep learning-powered tool, was used for ab initio
structure prediction of a-gliadin in the absence of homologous templates
(Jumper et al., 2021). Concurrently, Robetta was also employed to
generate alternative models for comparison, leveraging a different
structure prediction approach (Baek et al., 2021). In addition, ESMFold
(Lin et al., 2023) and OmegaFold (Wu et al., 2022) were also employed
for rapid protein structure predictions leveraging transformer-based
architectures. These comprehensive approaches ensured robust and
reliable structural predictions for the full-length a-gliadin protein. For
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template-based modeling, I-TASSER was used to identify templates from
the PDB and construct full-length atomic models through iterative
template-based fragment assembly simulations (Yang & Zhang, 2015).
Furthermore, C-I-TASSER (Zheng et al., 2021) and D-I-TASSER (Li et al.,
2021) tools from the I-TASSER suite, along with DeepFold (Pearce et al.,
2022) were used for potential model refinement. These tools incorporate
additional information like inter-residue contacts and optimize the
initial models for enhanced accuracy. This comprehensive strategy
ensured the generation of reliable and structurally sound 3D models for
the full-length a-gliadin protein.

2.2. Initial MD simulation for structural refinement

To refine the modeled structures into more compact and energeti-
cally favorable conformations, each of the a-gliadin models underwent a
100 ns MD simulation using GROMACS 2023.3 (Abraham et al., 2015).
These simulations were conducted in a water solvent environment,
employing the SPC/E water model and the Amber99sb-ILDN force field
(Lindorff-Larsen et al., 2010) for the protein. Each system was placed in
a cubic box with a minimum distance of 1.0 nm between the protein and
the box edges. The system was then neutralized with counterions and
energy-minimized using the steepest descent algorithm. Equilibration
was carried out in two stages: first in the NVT ensemble for 100 ps at 300
Kelvin using the V-rescale thermostat, followed by 100 ps in the NPT
ensemble at 1 bar using the Parrinello-Rahman barostat. The production
simulations were run for 100 ns with a 2 fs time step, saving compressed
coordinates every 10 ps. Long-range electrostatic interactions were
handled using the Particle Mesh Ewald (PME) method with a 1.0 nm
cutoff. Van der Waals interactions were cut off at 1.0 nm, with dispersion
correction applied for energy and pressure. Bonds involving hydrogen
atoms were constrained using the LINCS algorithm.

2.3. Model evaluation and selection

After 100 ns MD simulations, the final structure of each model were
evaluated using multiple metrics to select the best model for further
analysis. The Root Mean Square Deviation (RMSD) and radius of gyra-
tion (Rg) were computed to assess structural stability and compactness.
Structural quality was further evaluated using ERRAT (Colovos &
Yeates, 1993) on the SAVES server. ERRAT analyzes the statistics of non-
bonded interactions between atoms within the protein structure and
compares them to a database of reliable, high-resolution structures. This
analysis helps identify regions of the model with potential errors.
Furthermore, PROCHECK was used for Ramachandran plot analysis to
assess the phi (¢) and psi () torsion angles of the protein backbone
(Laskowski et al., 1993). These angles define the allowed conformations
for amino acid residues within a protein structure. Deviations from the
expected Ramachandran plot regions can indicate structural errors or
strained conformations. Additionally, ProSA-web (Wiederstein & Sippl,
2007) was used for structural evaluations. ProSA-web employs a po-
tential energy function to assess overall quality and stability of predicted
structures. Furthermore, we evaluated overall model quality using an
array of structural validation metrics, including MolProbity (global
structural quality), Clash (steric hindrance), Ramachandran plot
(backbone geometry), and QMEANDisCo Global score (consensus
quality). These metrics provide a comprehensive assessment of the ac-
curacy and reliability of predicted models.

2.4. Extended MD simulation in ethanol-water mixtures

The selected model was subjected to extended MD simulations in
four ethanol-water solvent mixtures with ethanol concentrations of 0 %,
30 %, 70 %, and 100 % (v/v) to investigate solvent effects on the
structure of protein. The number of water and ethanol molecules, as well
as the total number of atoms and simulation box volume for each system,
are provided in Table S3. Here, “XEtOH” denotes the mole fraction of
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ethanol in the simulation box, with the corresponding percent volume/
volume (v/v) ethanol concentration provided in parentheses for clarity.
For each solvent condition, two independent replicas were run to ensure
statistical reliability, resulting in a total of eight simulations. Simula-
tions were performed using GROMACS 2023.3 for 1000 ns each, with a
2-fs time step, under the NPT ensemble at 300 K and 1 bar pressure. The
Amber99sb-ILDN force field was used for the protein, the SPC/E model
for water, and ethanol molecules were parameterized using the
CHARMM General Force Field (CGenFF) via the acpype tool
(v2022.7.21). The simulation setup, including system preparation, en-
ergy minimization, equilibration (100 ps NVT followed by 100 ps NPT),
thermostat (V-rescale), barostat (Parrinello-Rahman), PME electro-
statics (1.0 nm cutoff), van der Waals interactions (1.0 nm cutoff with
dispersion correction), and bond constraints (LINCS, all bonds), was
identical to the initial 100 ns simulations unless otherwise specified.
Coordinates and energies were saved every 2 ps for analysis, providing
higher temporal resolution for the extended simulations.

2.5. Analysis of structural dynamics and solvent interactions

Structural dynamics and solvent interactions of a-gliadin were
analyzed using GROMACS, with custom Python scripts (MDAnalysis,
Seaborn, Matplotlib) for data processing and visualization. Conforma-
tional stability was assessed by calculating the RMSD for two replicas
per solvent condition. Protein compactness was evaluated by computing
Rg over time across replicas. Secondary structure evolution (a-helices,
p-sheets) was tracked using the DSSP algorithm. SASA was calculated,
and mean values across replicas were analyzed for each ethanol con-
centration to determine overall solvent effects. Hydrogen bonding with
water and ethanol was analyzed using gmx hbonds. RMSD distributions
were visualized with histograms and kernel density estimation (KDE) to
capture conformational heterogeneity within individual replicas (y-axis:
probability). SASA distributions were visualized using KDE only to
highlight the averaged solvent effect across replicas (y-axis: probability
density). To compute the minimum distance distribution function
(MDFF) and Kirkwood-Buff Integrals, we utilized the ComplexMixtures.
jl package (Martinez, 2022). PCA was performed on C-o atoms of the MD
trajectory using GROMACS. The covariance matrix of atomic positional
fluctuations was calculated with gmx covar, and eigenvalue decompo-
sition was carried out using gmx anaeig to obtain the principal com-
ponents. The first two principal components (PC1 and PC2) were
selected as reaction coordinates for further analysis. The MD trajectory
was projected onto these components, and the resulting distributions
were used to construct a two-dimensional free energy landscape with the
gmx sham utility, estimating the Gibbs free energy as a function of PC1
and PC2. The minima on the FEL, corresponding to the most stable
conformational states, were identified by locating the lowest free energy
values, and the time frames closest to these minima were mapped back
to the trajectory for structural characterization.

3. Results and discussion
3.1. Structure prediction and initial refinement of a-gliadin models

Due to the lack of an experimentally determined full-length structure
for a-gliadin, its structure was predicted using various deep learning-
based, template-based, or hybrid methods as described in Section 2.1.
The templates selected by I-TASSER and C-I-TASSER are provided in
Table S4. The predicted structures (Fig. S1) showed that deep learning-
based methods (AlphaFold, DeepFold, ESMFold, OmegaFold) produced
more extended conformations compared to template-based methods (I-
TASSER, C-I-TASSER), while the hybrid D-I-TASSER method displayed
intermediate characteristics. All predicted structures exhibited a com-
bination of helical and coiled regions, which is consistent with prior
experimental studies reporting 30-35 % o-helix content in a-gliadin
(Tatham & Shewry, 1985; Urade et al., 2018) as well as in the secondary
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structure prediction from sequence (Fig. S2). However, none of the
models captured the experimentally reported p-strand content (Tatham
& Shewry, 1985; Urade et al., 2018), likely due to limitations in deep
learning training datasets or biases in template selection. To refine these
models, 100 ns MD simulations were performed, resulting in more
compact structures (Fig. S3). Comparisons of pre- and post-simulation
conformations revealed that template-based models retained greater
structural integrity than deep learning-based models, suggesting that
evolutionary constraints from template selection enhance stability dur-
ing dynamics.

3.1.1. Conformational stability and compactness during initial refinement

The compactness and stability of the refined models were assessed
using Rg and RMSD over the 100 ns simulations conducted in pure
water, which serves as a standard reference environment for evaluating
protein structural properties in silico (Lindorff-Larsen et al., 2010). Rg
measures the compactness of protein, while RMSD indicates structural
stability over time. Fig. 1A shows Rg for each model, with error bars
representing variability across simulation time. C-I-TASSER exhibited
the lowest Rg at 2.02 + 0.02 nm, indicating a highly compact structure
with minimal fluctuations. D-I-TASSER followed closely with an Rg of
2.14 4+ 0.03 nm. I-TASSER and ESMFold showed moderate compactness
with Rg values of 2.54 + 0.05 nm and 2.63 + 0.24 nm, respectively.
OmegaFold, AlphaFold, and DeepFold had higher Rg values of 3.01 +
0.29 nm, 3.16 + 0.32 nm, and 3.19 + 0.40 nm, respectively, while
Robetta exhibited the highest Rg at 3.95 £+ 0.53 nm, reflecting less
compact structure with greater variability. Fig. 1B shows the RMSD,
with C-I-TASSER and D-I-TASSER maintaining the lowest RMSD at 0.62
=+ 0.08 nm and 0.81 + 0.07 nm, indicating high stability. I-TASSER and
ESMFold had RMSD values of 0.93 + 0.12 nm and 1.67 &+ 0.21 nm,
respectively, suggesting moderate stability. OmegaFold, DeepFold, and
AlphaFold showed higher RMSD values of 2.30 + 0.34 nm, 2.09 + 0.49
nm, and 2.98 + 0.46 nm, respectively, indicating greater conforma-
tional flexibility. Robetta had the highest RMSD at 3.30 + 0.67 nm,
reflecting significant structural rearrangement. These trends suggest
that template-based and hybrid methods (C-I-TASSER, D-I-TASSER, I-
TASSER) produce more stable and compact models, likely due to their
reliance on experimentally validated templates, while deep learning
methods (AlphaFold, DeepFold, OmegaFold, Robetta) predict more
flexible structures that undergo larger conformational changes during
MD refinement. The variability in Rg and RMSD across methods high-
lights the challenge of modeling food proteins like a-gliadin, where
flexibility is a functional trait but can lead to overprediction of extended
conformations in deep learning models. These trends align with exper-
imental observations of a-gliadins in 0.01 M NaCl (pH 4), which re-
ported a low intrinsic viscosity (4.0 mL g~!) and a hydrodynamic radius
of ~2.0 nm, consistent with compact conformations (Cole et al., 1984).
C-I-TASSER, D-I-TASSER, ESMFold, and I-TASSER models best captured
this compactness, with Rg values closest to the experimentally inferred
hydrodynamic radius (Cole et al., 1984). In contrast, AlphaFold, Deep-
Fold, OmegaFold, and Robetta overestimated the size of the protein,
potentially due to their tendency to predict extended conformations that
relax more significantly during MD simulations.

3.1.2. Structural quality assessment of predicted models

The structural quality of the refined models was thoroughly assessed
using multiple metrics, as summarized in Table 1. Among Al-based
methods, ESMFold demonstrated highest overall quality, achieving a
MolProbity score of 1.26, a Clash Score of 0.00, an ERRAT score of
66.31, a ProSA Z-score of —7.17, a QMEANDisCo Global score of 0.54 +
0.05, and 91.61 % of residues in favored Ramachandran regions (Table 1
and Fig. S4). AlphaFold followed closely, with a MolProbity score of
1.28, a Clash Score of 0.82, an ERRAT score of 63.19, a ProSA Z-score of
—5.83, and 91.97 % of residues in favored Ramachandran regions.
DeepFold, while exhibiting minimal steric clashes (Clash Score: 0.62),
showed lower reliability with an ERRAT score of 49.10. Among
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Fig. 1. Structural assessment of a-gliadin using multiple prediction models and molecular dynamics simulations. (A) Rg and (B) RMSD of a-gliadin predicted by eight
structure prediction tools. Bars represent mean values (in nm), with error bars indicating standard deviations over 100 ns MD simulations. (C) Probability distri-
butions of RMSD for a-gliadin in ethanol-water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH), based on 1 ps MD simulations in two independent replicas.
Annotated mean RMSD values + standard deviations highlight the conformational stability and solvent-dependent structural variability of a-gliadin. “XEtOH” in-
dicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v.

template-based approaches, C-I-TASSER performed best, with a Mol-
Probity score of 1.81, a Clash Score of 1.03, an ERRAT score of 70.40, a
ProSA Z-score of —5.41, and 85.40 % of residues in favored Ram-
achandran regions. D-I-TASSER, despite a high ERRAT score (74.39),
had notable steric clashes (Clash Score: 1.44). Robetta achieved highest
ERRAT score (76.39) among all methods but also exhibited moderate
clashes (Clash Score: 1.24).

Although the C-I-TASSER, D-I-TASSER, and Robetta models

exhibited a higher ERRAT score than ESMFold, and other models indi-
cating favorable non-bonded interactions, the overall structural integ-
rity of the ESMFold model was superior when evaluated across multiple
complementary metrics. Specifically, ESMFold achieved the lowest
MolProbity score, zero steric clashes, and the highest QMEANDisCo
score, reflecting excellent stereochemical quality and global consis-
tency. In contrast, the slightly higher ERRAT score of C-I-TASSER, D-I-
TASSER, and Robetta models was balanced by its moderate clash score
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Table 1
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Assessment of structural quality in o-gliadin protein models through molprobity, clash, ERRAT, ProSA, Ramachandran favored, Ramachandran outliers, and

QMEANDIsCo global scores.

Prediction Methods MolProbity Score Clash Score ERRAT ProSA Ramachandran QMEANDisCo Global
Favored Outliers
AlphaFold 1.28 0.82 63.19 —5.83 91.97 0.73 0.32 £ 0.05
C-I-TASSER 1.81 1.03 70.40 —5.41 85.40 2.92 0.35 £ 0.05
DeepFold 1.58 0.62 49.10 —5.56 87.23 0.73 0.34 £ 0.05
D-I-TASSER 2.04 1.44 74.39 -5.70 82.85 4.01 0.33 £ 0.05
ESMFold 1.26 0.00 66.31 -7.17 91.61 0.73 0.54 + 0.05
I-TASSER 2.09 1.65 69.58 —4.27 83.21 4.01 0.29 £ 0.05
OmegaFold 1.54 0.21 67.90 -5.90 89.42 0.73 0.32 £ 0.05
Robetta 1.72 1.24 76.39 —6.69 89.42 1.09 0.36 + 0.05

and lower QMEANDisCo value, suggesting local inconsistencies despite
reliable non-bonded interactions. These results emphasize that no single
quality metric fully determines model reliability; rather, combined
evaluation across metrics provides a more accurate assessment.

Considering Rg, RMSD, and overall structural quality metrics,
ESMFold (Al-based) and C-I-TASSER (template-based) emerged as top
performers, balancing compactness, stability, and structural reliability.
Zero Clash Score and high QMEANDisCo score of ESMFold model indi-
cate a highly refined structure, while high ERRAT score and reasonable
stereochemistry of the C-I-TASSER model make it the most reliable
among template-based methods. In contrast, low ERRAT score of
DeepFold model suggests potential structural inaccuracies despite
minimal clashes, and high ERRAT score of the Robetta model is offset by
the presence of steric clashes. Therefore, the ESMFold model was
selected for extended simulations due to its lowest MolProbity score,
absence of steric clashes, and highest QMEANDisCo score, demon-
strating an optimal balance of compactness, stability, and accuracy
during initial refinement.

3.2. Conformational stability and compactness in ethanol-water mixtures

To ensure comprehensive exploration of the conformational space of
the refined a-gliadin model, we conducted extensive MD simulations,
each lasting 1 ps and performed in two replicas for every solvent con-
dition. This approach allowed the protein structure ample time to relax
from its initial predicted conformation and to effectively sample the
equilibrium conformational ensemble under varying ethanol concen-
trations (0 %, 30 %, 70 %, and 100 % v/v EtOH). The primary goal was
not only to assess the stability of the model but also to characterize the
range of conformations accessible to a-gliadin in different solvent en-
vironments. Conformational stability was evaluated using RMSD anal-
ysis across the two replicas for each condition. The resulting RMSD
distributions, shown in Fig. 1C, reveal distinct trends as ethanol con-
centration increases. In pure water (0 % EtOH), the mean RMSD across
replicas is 1.05 + 0.18 nm, with individual replica values of 1.06 nm and
1.04 nm, indicating high stability and minimal variability (standard
deviation of 0.01 nm). This suggests that the dominant conformational
states are well-sampled within the 1 ps timescale. At 30 % EtOH, the
mean RMSD decreases to 0.61 + 0.19 nm (replica values: 0.68 nm and
0.54 nm), reflecting consistent structural behavior and low variability.
At 70 % EtOH, the mean RMSD rises slightly to 1.10 & 0.20 nm (replicas:
1.08 nm and 1.11 nm), yet variability between replicas remains minimal
(standard deviation of 0.02 nm), indicating that the system maintains a
stable conformational state even at this higher ethanol concentration. In
pure ethanol (100 % EtOH), the mean RMSD is 0.79 + 0.16 nm, with
replica-specific values of 0.75 nm and 0.82 nm, showing moderate
variability (standard deviation of 0.04 nm). These RMSD results suggest
that the a-gliadin structure remains relatively stable across a wide range
of ethanol concentrations, with RMSD values ranging from 0.61 to 1.10
nm. This indicates that a-gliadin can maintain its conformational sta-
bility despite significant changes in solvent composition.

To gain deeper insights into the compactness of the a-gliadin

structure across varying ethanol concentrations (0 %, 30 %, 70 %, and
100 % v/v EtOH), we analyzed the Rg values and its corresponding free
energy profile, as shown in Fig. 2A. In pure water (0 % EtOH), the
average Rg is 2.397 + 0.137 nm, with replica-specific values of 2.424
nm and 2.369 nm, indicating that a-gliadin maintains a relatively
compact structure with moderate fluctuations. At 30 % EtOH, the Rg
increases to 2.533 + 0.044 nm (replica values: 2.511 nm and 2.555 nm),
suggesting minimal variability and a slight expansion. At 70 % EtOH, the
Rg rises further to 2.639 + 0.113 nm, with replica-specific values of
2.616 nm and 2.662 nm, reflecting increased structural variability. In
pure ethanol (100 % EtOH), the Rg reaches 2.645 + 0.105 nm (replicas:
2.628 nm and 2.661 nm), indicating that a-gliadin adopts a notably
expanded conformation. Overall, the trend of increasing Rg with higher
ethanol concentrations (Fig. 2B) demonstrates that a-gliadin progres-
sively adopts a less compact structure in ethanol-rich environments. This
observation aligns well with previous experimental and computational
studies, which report that a-gliadin, like a-zein (another prolamin in
maize), loses compactness and assumes an extended conformation in 70
% aqueous ethanol (Li et al., 2012; Shewry & Tatham, 1997; Tatham &
Shewry, 1985; Yu, Xu, et al., 2023). It also suggests that our simulations
capture realistic solvent-induced conformational changes. The observed
expansion may be attributed to the interaction of ethanol with hydro-
phobic residues, which disrupts the tertiary structure of protein by
exposing nonpolar side chains and weakening hydrophobic packing
(Feng et al., 2021, 2022). Additionally, ethanol competes with water for
hydrogen bonding sites, thereby reducing the stabilizing intramolecular
hydrogen bonds and destabilizing the native fold (Dixit et al., 2002;
Tolmachev et al., 2023). Moreover, the reliability of our simulation re-
sults is strongly supported by their agreement with experimental ob-
servations from circular dichroism and infrared spectroscopy studies
that report ethanol-driven increases in a-helical content and molecular
expansion of gliadins (Li et al., 2012; Shewry & Tatham, 1997; Tatham
& Shewry, 1985; Yu, Xu, et al., 2023). This concordance with experi-
mental data provides key validation that our MD simulation approach
accurately captures the solvent-dependent conformational behavior of
a-gliadin, despite the complexity of ethanol-water mixtures.

3.3. Residual fluctuations in ethanol environments

To further investigate the residue-level flexibility of a-gliadin, we
analyzed the Root Mean Square Fluctuation (RMSF) across all solvent
conditions (Fig. S5). A closer examination of RMSF data reveals an
interesting pattern: at all ethanol concentrations except for 100 %, the
segment of a-gliadin spanning residues Phe238 to Glu257 consistently
display elevated RMSF values. The increased flexibility observed in this
segment, which is rich in specific residues such as glutamine, likely
arises from reduced conformational constraints and the disruptive effect
of ethanol on hydrophobic interactions. These interactions typically
contribute to the stability and rigidity of protein structures. Interest-
ingly, when the ethanol concentration reaches 100 %, the fluctuations in
this region decrease markedly. Specifically, the residues Glu240 to
Glu244 exhibit the highest RMSF values within this segment, but these
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Fig. 2. (A) Free energy landscapes of a-Gliadin as a function of Rg in ethanol-water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH) from 1 ps MD simulations,
showing up to two replicas with mean + SD. (B) Mean Rg values with standard deviations plotted against ethanol concentration, summarizing conformational trends
across solvent conditions. “XEtOH” indicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v.

values are now reduced to 0.5-0.7 nm, compared to higher fluctuations
at lower ethanol concentrations. This suggests that in pure ethanol, the
protein backbone in this region becomes more stabilized, possibly due to
reduced competition with water for hydrogen bonding or a collapse of
the protein into a more compact conformation under these solvent
conditions. In addition, the regions spanning residues GIn49 to Tyr75
and Pro65 to Pro95 exhibit pronounced fluctuations at higher ethanol
concentrations, particularly at 70 % and 100 % ethanol. These segments
are notably rich in proline and glutamine residues. Proline is well known
for introducing kinks and disrupting regular secondary structures, while
polar side chains of glutamine are highly solvent-accessible and prone to
forming transient hydrogen bonds with the surrounding ethanol and
water molecules. The abundance of these residues likely contributes to
the increased flexibility observed in these regions, as the disruption of
hydrophobic interactions and hydrogen bonding by ethanol further
amplifies their dynamic behavior.

In contrast, the region from residues Gln135 to Gln225 remains
relatively stable across all solvent conditions. The RMSF values in this
segment range from 0.18 nm to 0.44 nm, with an average fluctuation of
0.20-0.30 nm, indicating a consistently rigid structure. This stability is

likely attributed to the presence of charged residues such as lysine and
aspartic acid, as well as cysteine, which can form stabilizing electrostatic
interactions and disulfide bonds, respectively. These interactions
enhance local rigidity and help maintain the structural integrity of this
segment even in the presence of high ethanol concentrations. Taking
together, these findings highlight the heterogeneous nature of a-glia-
din’s response to solvent environment: while proline- and glutamine-
rich regions become highly flexible in ethanol-rich conditions, do-
mains stabilized by electrostatic and covalent interactions retain their
rigidity, contributing to the overall resilience of the core structure of
protein.

These findings have important implications for the functional role of
a-gliadin within gluten. The observed decrease in compactness of
a-gliadin in ethanol-water mixtures likely enhances its solubility, a
critical property leveraged during gluten extraction and dough prepa-
ration, where such solvents are routinely employed to selectively isolate
gliadin fractions from other gluten components. Increased solubility in
these mixtures facilitates the separation and purification of gliadins,
which are essential for imparting extensibility and viscosity to dough.
However, this structural expansion may have a downside, particularly in
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the context of celiac disease. The more extended conformation of
a-gliadin in ethanol-rich environments could increase the accessibility of
immunogenic epitopes. The regions spanning residues Gln49-Tyr75 and
Pro65-Pro95 are of particular interest due to their potential immuno-
genicity. Notably, the segment from residues Pro65 to Pro95 substan-
tially overlaps with the well-characterized 33-mer peptide
(LOQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF), which contains mul-
tiple overlapping T-cell stimulatory epitopes recognized by HLA-DQ2/
DQ8-restricted T cells in individuals with celiac disease (de Groot
et al., 2020; Kim et al., 2004; Shan et al., 2002). Both regions are rich in
proline and glutamine residues, a hallmark of immunogenic gliadin se-
quences, and contain motifs such as PQPQLPY and QLQPFPQPQ that are
known to trigger immune responses.

3.4. Solvent accessibility and protein-solvent interactions

The exposure of o-gliadin to solvents across varying ethanol
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concentrations (0 %, 30 %, 70 %, and 100 % v/v EtOH) was evaluated by
calculating the SASA, offering insights into protein-solvent interactions
and their influence on structural dynamics. Fig. 3A-3B illustrates the
SASA distributions for the entire protein and its hydrophobic residues,
averaged over two replicas per condition. In pure water (0 % EtOH), the
average SASA is 192.68 + 8.39 nm?, indicating a relatively compact
structure with limited solvent exposure. This aligns with the low Rg of
2.397 nm. At 30 % EtOH, the mean SASA increases to 219.19 4 2.39
nm?, suggesting increased solvent accessibility as the protein begins to
expand. This corresponds with an increased Rg of 2.533 nm and higher
flexibility in regions such as residues Glu240 to Glu244. The enhanced
solvent exposure and flexibility observed in segments like Gln227-
Ala261 are largely due to disruption of intramolecular hydrogen
bonding and increased ethanol interaction; this occurs with only a minor
change in the overall salt bridge number (from 3.45 + 1.01 at 0 % to
3.18 & 1.05 at 30 % ethanol), which is discussed further in Section 3.4.2.
The SASA peaks at 70 % EtOH, with a mean of 238.31 + 5.56 nm?2. This
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Fig. 3. Kernel density estimations of (A) SASA of the entire protein and (B) SASA of hydrophobic residues, as well as kernel density estimations of number of (C)
water molecules and (D) ethanol molecule distributed within 0.6 nm of the protein surface. Panel (E) shows the number of hydrogen bonds (H-bonds) formed
between a-gliadin and water (blue) or ethanol (red) in ethanol-water mixtures (0 %, 30 %, 70 %, and 100 % v/v EtOH) over 1 ps MD simulations. “XEtOH” indicates
the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v. Each curve represents the average value across two replicas per solvent
condition, with mean + standard deviation annotated above the distribution peaks. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)



N. Kumar and Y. Li

corresponds to an increased Rg of 2.639 nm and significant flexibility in
residues GIn49 to Tyr75, as well as Glu240 to Glu244 (though with
slightly decreased flexibility compared to 30 % EtOH). In pure ethanol
(100 %), the mean SASA increases further to 241.60 + 3.79 nm?, indi-
cating maximal solvent exposure and the lowest variability among
replicates. This is consistent with an expanded protein conformation
(higher Rg) and heightened flexibility in the Pro65 to Pro95 region.
However, the fluctuation in residues Glu240 to Glu244 decreases, sug-
gesting a stabilized yet expanded conformation. These findings indicate
that at higher ethanol concentrations (70 % and 100 %), hydrophobic
interactions within a-gliadin are maximally disrupted, resulting in large
exposure of hydrophobic residues to the solvent.

For the hydrophobic residues specifically, the mean SASA in 0 %
EtOH is 179.80 + 2.28 nm?, showing limited exposure in a water-
dominated environment. At 30 % EtOH, it increases to 185.59 4+ 1.38
nm?, and at 70 % EtOH, it reaches 191.35 + 2.18 nm?, reflecting a
progressive exposure of hydrophobic regions (e.g., tyrosine, isoleucine)
as ethanol disrupts their burial within the protein core, corroborating
the RMSF increase in flexible regions. In 100 % ethanol, mean SASA for
hydrophobic residues climbs to 202.63 + 2.81 nm?, representing
maximum exposure. This is likely due to ethanol’s superior ability to
solvate hydrophobic surfaces, which aligns with overall SASA trend, and
the expanded protein structure indicated by Rg and RMSF data.
Collectively, these SASA trends reinforce the observation that ethanol-
rich solvents drive structural expansion in a-gliadin by competing
with water for hydrogen bonding and interacting with hydrophobic
residues, thereby disrupting the tertiary structure of protein. The
increased solvent accessibility observed at 70 % and 100 % ethanol for
both total protein and its hydrophobic residues likely enhance the sol-
ubility of a-gliadin, thereby facilitating its extraction during gluten
processing. The progressive exposure of hydrophobic residues with ris-
ing ethanol concentrations indicates a transition from a compact, water-
stabilized state to a more solvent-exposed, ethanol-stabilized confor-
mation. This structural shift may significantly influence the functional
properties of a-gliadin in high-ethanol environments, such as those
encountered during food processing.

3.4.1. Hydrogen bonding analysis

To further elucidate protein-solvent interactions, we calculated both
the number of hydrogen bonds (H-bonds) formed between a-gliadin and
water or ethanol, as well as the number of water and ethanol molecules
within 0.6 nm of the protein surface. These analyses provide insight into
the solvent distribution around a-gliadin and are summarized in Fig. 3C-
3E. In pure water (0 % EtOH), the number of protein-water H-bonds is
709.21 + 15.81, while protein-ethanol H-bonds are 0 because ethanol is
not present, suggesting a water-dominated H-bonding network with
polar residues, with 2792.54 + 118.32 water molecules within 0.6 nm.
At 30 % EtOH, the number of protein-water H-bonds decreases to 445.15
+ 31.66, and protein-ethanol H-bonds is 207.38 + 21.96, indicating a
shift in solvent interactions, with 1533.09 + 134.55 water and 576.82
+ 37.08 ethanol molecules. This corresponds to a 44 % reduction in
water molecules relative to 0 % EtOH, as ethanol begins to solvate the
protein, consistent with the SASA increase. At 70 % EtOH, protein-water
H-bonds further decrease to 405.31 + 10.69, while protein-ethanol H-
bonds slightly decreased yet remain stable at 194.84 + 10.69, with
1256.77 + 55.48 water and 676.49 + 20.70 ethanol molecules. This
stability arises might be due to a dynamic competition between ethanol
and residual water molecules near the protein surface, creating a tran-
sitional solvation environment. Such competition moderates the avail-
ability of solvent molecules for hydrogen bonding, resulting in
fluctuating but overall maintained protein-ethanol hydrogen bonds.
This reflects a 54.8 % reduction in water molecules compared to 0 %
EtOH (a 10.8 % additional reduction from 30 % EtOH), with ethanol
playing a larger role in solvation, aligning with the peak SASA (238.31
nm?) and maximum structural expansion (higher Rg). The broader
fluctuation range in protein-water hydrogen bonds at 70 % EtOH reflects
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the transitional solvent composition where water and ethanol dynami-
cally compete to solvate the protein. This competition, combined with
increased conformational flexibility at this specific concentration, pro-
duces greater variability in hydrogen bonding compared to more static
solvent environments at lower or higher ethanol concentrations. In pure
ethanol (100 % EtOH), protein-water H-bonds drop to 0 because water is
absent, while protein-ethanol H-bonds increase sharply to 461.10 +
12.27, with 1058.00 + 20.54 ethanol molecules, indicating that ethanol
fully solvates the protein, stabilizing the expanded conformation such as
region Phe238 to Glu257. This shift in H-bonding and distribution of
water and ethanol within 0.6 nm of the protein correlates with the
increased exposure of hydrophobic residues (SASA 202.63 nm?) and the
flexibility observed in regions like residues Gln49 to Tyr75 and Pro65 to
Pro95, suggesting that ethanol H-bonds with polar groups compensate
for the loss of water H-bonds, maintaining the solvent-exposed state of
protein.

Due to the higher H-bonding capability of water (up to four H-bonds
per molecule compared to ethanol, which can form two), the number of
protein-water H-bonds is significantly higher compared to protein-
ethanol H-bonds at 30 % and 70 % EtOH. At 30 % EtOH, water mole-
cules still dominate (70 % by volume, molar ratio ~ 87:13 water:
ethanol), with 1558.08 + 142.22 water molecules within 0.6 nm pref-
erentially forming H-bonds with polar residues due to their stronger H-
bonding potential. Even at 70 % EtOH (30 % by volume, molar ratio ~
57:43 water: ethanol), water remains a significant component, main-
taining 405.31 protein-water H-bonds and 1256.77 + 55.48 water
molecules within 0.6 nm. Ethanol, while capable of H-bonding, also
solvates hydrophobic residues, as seen in the SASA increase for hydro-
phobic residues (from 179.80 nm? at 0 % to 191.35 nm? at 70 % EtOH)
and the presence of 676.49 + 20.70 ethanol molecules within 0.6 nm at
70 % EtOH, reducing its competition for H-bonding sites. Additionally,
the semi-compact structure of the protein at these concentrations may
limit the exposure of additional H-bonding sites, preserving the domi-
nance of water until 100 % EtOH, where ethanol fully replaces water,
forming 461.10 H-bonds with 1058.00 + 20.54 ethanol molecules.
These H-bonding dynamics support the observed structural changes,
enhancing solubility in ethanol-rich mixtures.

3.4.2. Salt bridge analysis

To evaluate how ethanol concentration affects the structural stability
of a-gliadin, we analyzed salt bridge interactions between charged res-
idues within 4 A under various solvent conditions, averaging results over
two replicas for reliability (Fig. 4 and Table S5). At 0 % ethanol, the
average number of salt bridges was 3.45 + 1.01, with Argl64-Aspl65
being the most prominent (47.46 %), followed by Arg277-Glu274
(40.77 %) and Arg205-Glu202 (11.70 %). The average distance be-
tween these interacting residues was 3.16 + 0.41 A. When the ethanol
concentration increased to 30 %, the number of salt bridges decreased
slightly to 3.18 + 1.05, confirming only a minor reduction consistent
with the modest structural expansion described in the SASA analysis
(section 3.4.1). The Argl64-Aspl65 pair become even more dominant
(62.01 %), while Arg277-Glu274 and Arg205-Glu202 accounted for
25.33 % and 12.67 % of interactions, respectively. The average inter-
residues distance also slightly decreased to 3.12 + 0.35 A, indicating
that although the protein becomes more solvent-accessible, its major
electrostatic contacts were retained. At 70 % ethanol, the number of salt
bridges declined marginally to 3.12 + 0.87, with Argl64-Aspl65
remaining the most prevalent (52.51 %), followed by Arg277-Glu274
(32.25 %) and Arg205-Glu202 (15.24 %), and the average distance
increased slightly to 3.19 + 0.39 A. This gradual changes in salt bridge
count and distribution up to 70 % ethanol supports the notion that the
early conformational expansion of a-gliadin occurs primarily through
hydrogen bond disruption and increased ethanol-mediated solvation,
rather than through loss of key electrostatic interactions. Notably, at
100 % ethanol, the number of salt bridges rose significantly to 6.99 +
0.99, accompanied by a marked shift in dominant interactions: Arg205-
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Fig. 4. Effects of ethanol concentration on salt bridge formation and residue pair contributions. (A) Average number of salt bridges, with error bars indicating
standard deviations, and (B) relative contributions of key residue pairs to the total number of salt bridges at 0 %, 30 %, 70 %, and 100 % v/v ethanol.

Glu202 became the most prevalent (50.06 %), surpassing Arg277-
Glu274 (27.30 %) and Argl64-Aspl65 (22.00 %). The average dis-
tance between residues also tightened to 3.09 + 0.40 A. The increasing
dominance of Arg205-Glu202-from 11.70 % at 0 % ethanol to 50.06 %
at 100 % alongside the relative decrease or shift in Argl164-Asp165 and
Arg277-Glu274, suggests an ethanol-driven reorganization of electro-
static interactions. This trend, coupled with the overall increase in the
number of salt bridges from 3.45 to 6.99, reflects a transition from
water-mediated stability to ethanol-stabilized contacts. The shift in
dominant salt bridge pairs and the increased number of interactions at
100 % ethanol indicate that ethanol promotes the formation of new
electrostatic contacts, thereby stabilizing the extended structure of
a-gliadin.

3.5. Secondary structure evolution

The evolution of secondary structure of a-gliadin was examined
across ethanol concentrations (0 %, 30 %, 70 %, and 100 % v/v EtOH) to
elucidate solvent-induced structural changes. The secondary structure
analysis presented is from one representative replicate, selected for
clarity in visualization (Fig. S6). This replicate reflects the overall
behavior observed across all simulation replicates, as evidenced by
consistent structural stability and other metrics. In pure water (0 %
ethanol), o-gliadin exhibits a secondary structure composition of
approximately 37.0 % a-helix, 2.0 % f-sheet, 11.0 % p-turn, and 50.0 %
random coil. This indicates a partially ordered structure with significant
helical and disordered regions, and minimal p-sheet content. These re-
sults closely align with experimental circular dichroism studies, which
report that gliadins in aqueous solution typically have 30-40 % a-helix,
45-55 % coil, and low B-sheet content (Shewry & Tatham, 1997; Tatham
& Shewry, 1985; Urade et al., 2018).

At 30 % EtOH, secondary structure of a-gliadin shows subtle but
meaningful changes: the a-helix fraction increases slightly to 37.5 %,
fB-sheet content decreases to 1.5 %, p-turns rise to 11.5 %, and random
coil content drops to 49.5 %. These shifts suggest the onset of structural
rearrangement as the protein begins to respond to the presence of
ethanol. At 70 % EtOH, a-gliadin exhibits a further increase in o-helix
content to 38.0 %, while p-sheet content remains low at 1.5 %. The
fraction of p-turns decreases slightly to 11.0 %, and the coil content
remains steady at 49.5 %. These results suggest stabilization of helical
structure at intermediate ethanol concentrations, even as the protein
undergoes significant expansion, as indicated by increased Rg and SASA.
These results are consistent with experimental CD studies, which show
that gliadins maintain or slightly increase a-helix content and remain
largely disordered in 50-70 % ethanol (Shewry & Tatham, 1997;
Tatham & Shewry, 1985).

In pure ethanol (100 % EtOH), the helix fraction reaches 38.5 %,
B-sheet remains at 1.5 %, p-turns rise to 11.5 %, and coil content de-
creases to 48.5 %, indicating a slightly more ordered and stabilized
helical structure in a fully ethanol environment. The gradual increase in
helical content (from 37.0 % to 38.5 %) with rising ethanol

concentration suggests that ethanol promotes helical stability, likely by
disrupting water-mediated hydrogen bonds and enhancing intra-
molecular hydrogen bonding within the protein. The minimal change in
B-sheet content (2.0 % to 1.5 %) indicates that f-sheet formation is not
favored in ethanol, consistent with gliadin’s intrinsic structural ten-
dencies. Meanwhile, the slight fluctuation in p-turns (from 11.0 % to
11.5 %) reflects local structural rearrangements in flexible regions as the
protein adapts to the solvent. The decrease in coil content (from 50.0 %
to 48.5 %) further supports the notion of an expanded yet more stabi-
lized protein conformation at 100 % ethanol.

3.6. Protein solvation structure and thermodynamics

To understand how the solvent environment affects the behavior of
a-gliadin, we examined its local solvation structure and thermody-
namics for one of the replicas of 1 ps MD simulation trajectories. Given
the irregular shape of protein, we utilized Minimum-Distance Distribu-
tion Functions rather than standard Radial Distribution Functions to
more accurately characterize how water and ethanol molecules arrange
themselves around the protein (Figs. 5 and S7). The MDDF results
revealed distinct solvation patterns. At 0 % EtOH, water forms two
pronounced layers around the protein, with peaks at approximately 1.9
A (height: 1.49) and 2.6 A (height: 1.51). This structured hydration shell
contributes to the stability and compactness of a-gliadin (Fig. 5A-5B).
Upon increasing to 30 % EtOH, the water peak at 1.9 A diminishes to a
height of 1.18, indicating that ethanol begins to displace water from the
protein surface. Ethanol itself displays a sharp peak at 2.3 A (height:
4.51), suggesting preferential association with less polar or hydrophobic
regions, which may initiate partial unfolding of the protein. At 70 %
EtOH, the water peak at 1.9 A becomes more pronounced (height: 2.05),
likely reflecting water clustering around remaining polar or charged
residues as bulk water is depleted. A broader water peak at 4.5 A (height:
1.19) further supports this selective retention. The peak height of
ethanol decreases, indicating competition between the two solvents as
the protein expands. In 100 % EtOH, the ethanol peak shifts to 1.9 A
(height: 3.2) but appears broader and less intense, reflecting weaker and
less specific interactions with the protein surface compared to water.

To visualize the residue-level specificity of solvent interactions, we
analyzed MDDF densities for individual a-gliadin residues (Fig. S7). In
pure water, water density was lowest around residues 151-225, a region
enriched in hydrophobic and aliphatic residues (e.g., isoleucine, leucine,
valine), suggesting these segments are relatively buried and adopt stable
secondary structure with limited solvent exposure. At 30 % EtOH, the
largest reductions in water density occurred in residues 1-45 and
151-225, consistent with the distribution observed under aqueous
conditions. Both regions are dominated by hydrophobic and aliphatic
side chains, while additional changes in 258-268 and 300-307 reflect
increased solvent accessibility as the protein expands. Ethanol density
increased notably in residues 76-150, a proline- and glutamine-rich
segment, indicating preferential solvation of flexible, disordered re-
gions. At 70 % EtOH, this pattern persisted, with water remaining near
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Fig. 5. Solvent organization around o-gliadin across ethanol-water mixtures. (A, B) Minimum Distance Distribution Functions (MDDF) of ethanol and water,
respectively, relative to the protein at ethanol concentrations of 0 %, 30 %, 70 %, and 100 % (v/v). “XEtOH” indicates the ethanol mole fraction; values in pa-
rentheses represent ethanol concentration as % v/v. (C, D) Corresponding Kirkwood-Buff integrals (KBIs) for ethanol and water, quantifying preferential accu-

mulation or exclusion of solvent species near the protein surface.

polar and charged residues and ethanol accumulating around proline-
and glutamine-rich stretches, consistent with solvent competition for
flexible and hydrophobic regions. In 100 % EtOH, high ethanol density
was observed in the majority of N-terminal residues 1-45), proline- and
glutamine-rich regions (57-67, 76-97, 118-157, 178-188, 219-276),
and the C-terminal (298-307), corresponding to exposed hydrophobic
and flexible polar residues. This residue-dependent redistribution of
solvent reflects ability of ethanol to displace water, and preferentially
solvate nonpolar and disordered surfaces, in line with established
models of protein-solvent interactions (Prabhu & Sharp, 2006; Tima-
sheff, 2002).

To quantify solvent preference, we calculated integrals (Fig. 5C-5D).
In pure water, the KB integral for water starts at around —30 mol-L ™
and levels off at —26 mol-L ™! at 15 A, indicating strong water enrich-
ment and stabilization of the protein. At 30 % EtOH, the KB integral for
water becomes more negative (—45 mol-L’l), reflecting increased
exclusion of water from the protein’s vicinity as ethanol displaces it.
Simultaneously, the KB integral for ethanol shifts from —43 mol-L™! to
about +5 mol-L ™! at longer distances, indicating ethanol’s increasing
association with the protein, likely due to greater exposure of hydro-
phobic regions. At 70 % EtOH, the KB integral for water drops sharply to
—90 mol-L7! initially and then settles at —41 mol-L ™}, while ethanol’s
integral moves from —45 to —30 mol-L "}, suggesting ongoing compe-
tition between the solvents, with water preferentially stabilizing polar
regions. In pure ethanol, the KB integral for ethanol levels out at —24
mol-L 7}, indicating a weaker, less specific interaction with the protein,
as ethanol is less effective at stabilizing charged or polar residues
compared to water. These findings demonstrate that the solvation shell
around a-gliadin is dynamically remodeled as ethanol concentration
increases. Water forms a structured, stabilizing layer that maintains
protein compactness, while ethanol progressively disrupts this shell,
leading to a looser and less stable environment.
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3.7. Conformational dynamics

PCA was employed to elucidate the dominant modes of conforma-
tional variability in a-gliadin across ethanol-water mixtures. The anal-
ysis focused on the first two principal components (PC1 and PC2), which
together captured a substantial proportion of the total variance (Fig. 6).
In pure water (0 % EtOH), the conformational landscape was notably
rugged in replica 1, displaying four distinct minima (PCl: —3.26 to
—7.91, PC2: —4.40 to 2.81), each corresponding to well-sampled regions
of the trajectory. In contrast, replica 2 revealed a single dominant
minimum, indicating some variability in sampling but overall conver-
gence toward major conformational states at low ethanol concentra-
tions. The variance explained by PC1 and PC2 in water (49-47 % and
13-15 %, respectively) demonstrates that these axes effectively capture
most of the large-scale motions.

At 30 % EtOH, the conformational space sampled by a-gliadin
became more structured: replica 1 exhibited two closely spaced minima
alongside a marked increase in variance explained by PC1 (76.7 %),
while replica 2 revealed four closely spaced minima with PC1 and PC2
explaining 58.9 % and 16.2 % of the variance, respectively. This sug-
gests a solvent-driven shift toward a more restricted conformational
ensemble dominated by specific collective motions. At 70 % ethanol, the
protein exhibited a more complex and heterogeneous landscape, with
three distinct minima in both replicas and a lower proportion of variance
captured by PC1 (36-39 %), reflecting increased conformational di-
versity and the presence of multiple accessible states. In 100 % EtOH,
the results diverged between replicas: replica 1 exhibited a single deep
minimum, while replica 2 sampled four well-separated minima, with
PC1 and PC2 together accounting for over 54 % of the variance. These
findings suggest that high ethanol content allows a-gliadin to access a
broader range of conformations, likely due to the disruption of stabi-
lizing intramolecular interactions and the formation of new electrostatic
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Fig. 6. (A) Free energy landscapes of a-gliadin derived from the first two principal components (PC1 and PC2) from both replicas of 1 ps MD simulations in ethanol-
water mixtures (0 %, 30 %, 70 %, and 100 % v/v). “XEtOH” indicates the ethanol mole fraction; values in parentheses represent ethanol concentration as % v/v.
Colour gradients indicate free energy (kcal/mol), and red dots mark the energy minima representing predominant conformational states. (B) Representative a-gliadin
structures at the global minima, extracted from the free energy landscapes for each solvent condition. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

contacts, as evidenced by the emergence of additional salt bridges. This
shift ultimately stabilizes the extended structure of a-gliadin in ethanol-
rich environments.

To further interpret these global motions, the global minimum
structures identified for each condition from one of the replicas were
superimposed, using the global minimum structure obtained at 0 %
EtOH as the reference. Per-residue RMSD values were then mapped onto
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the B-factor field and visualized with a blue-white-red gradient, where
red highlights regions of highest structural divergence (Fig. 7). The
overall RMSDs between global minima were 11.56 A (30 % EtOH),
13.28 A (70 % EtOH), and 10.72 A (100 % EtOH), indicating significant
conformational changes, with the largest deviation observed at 70 %
ethanol. Residue-specific RMSD analysis highlighted pronounced flexi-
bility in several regions (Fig. S8), most notably the C-terminal segment



N. Kumar and Y. Li

S
&
N
i

N ) g

Fig. 7. Superimposed global minima structures of a-gliadin across ethanol
concentrations. Structures from 0 % (solid gray), 30 % (solid cartoon with flat
sheets), 70 % (slightly transparent with smooth loops), and 100 % (more
transparent with simple helices) ethanol are shown superimposed. Structural
differences are visualized by mapping per-residue RMSD values onto the B-
factor field using a blue-white-red colour gradient, where red indicates regions
of highest divergence. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(GIn227-Ala261; 8-33 i\), where Ser234, Leu233, and GIn235 exhibited
extreme deviations, suggestive of a disordered or solvent-exposed loop.
The proline- and glutamine-rich segment Pro64-Leu78 (10-28 A) also
displayed high RMSDs, with GIn72 and Ser71 among the most flexible
residues. Additionally, the region spanning Tyr121-Gln136 (12-27 A)
showed substantial deviations, particularly at Pro127, Ile128, Ser129,
and GIn130, indicating another flexible segment sensitive to ethanol
concentration, which displayed marked increases in both RMSD and
RMSF. The N-terminal region (Met1-Pro30; 5-16 A) was comparatively
less flexible. Interestingly, the lower overall RMSD in 100 % ethanol
compared to 70 % ethanol may reflect a stabilization effect, possibly due
to dehydration or altered hydrophobic interactions. These results
demonstrate that ethanol concentration profoundly modulates the
conformational landscape of a-gliadin, with specific regions exhibiting
pronounced structural variability likely driven by disrupted hydrogen
bonding and altered solvent interactions. These findings are consistent
with RMSD, Rg, and RMSF analyses, which indicated increased flexi-
bility, expansion, and solvent exposure in ethanol-rich environments.
Importantly, the ability of a-gliadin to sample diverse conformational
states in ethanol may have implications for its solubility, its functional
properties in food matrices, and the accessibility of immunogenic
epitopes.

4. Conclusion

This study presents a comprehensive, multi-scale analysis of struc-
tural dynamics of a-gliadin in ethanol-water mixtures (0 %, 30 %, 70 %,
and 100 % v/v), integrating advanced structure prediction, MD simu-
lations, and both residue-level and global conformational analyses.
Notably, this work is the first to quantitatively combine state-of-the-art
structure prediction with microsecond-scale MD simulations to sys-
tematically probe the behavior of a-gliadin across a full range of ethanol
concentrations. Comparative model assessment revealed that ESMFold
(an Al-based method) and C-I-TASSER (a template-based method) pro-
duced more compact and stable a-gliadin structures, while several other
Al-driven models tended to favor more extended, flexible

12

Food Chemistry 497 (2025) 147044

conformations. This conclusion is supported by Rg and RMSD, as well as
structural quality metrics, and aligns with experimental measurements
of gliadin compactness in aqueous solution. After initial refinement and
evaluation, the ESMFold model was selected for extended simulations
due to its optimal balance of structural compactness and overall quality.

Our extensive MD simulations reveal that o-gliadin maintains
remarkable conformational stability across all the solvent conditions.
However, there is a clear trend toward expansion and increased solvent
accessibility as ethanol concentration rises. Residue-level analyses
reveal that proline- and glutamine-rich regions (Pro64-Leu78, Tyr121-
Gln136, GIn227-Ala261) are the most dynamic, whereas the central
region remains consistently rigid. Residues like Ser234, Leu233, and
GIn235 exhibit extreme fluctuations, suggesting these segments act as
disordered or solvent-exposed loops. In contrast, the central region
(GIn135-GIn225) remains consistently rigid, stabilized by charged res-
idues (lysine, aspartic acid) and cysteine-mediated disulfide bonds,
which confer local structural integrity even in ethanol-rich environ-
ments. Secondary structure analysis reveals modest stabilization of he-
lical content and a reduction in f-sheet content, especially at
intermediate and high ethanol concentrations. Residue-level analyses
underscore the heterogeneous flexibility of a-gliadin: proline- and
glutamine-rich regions become highly dynamic in ethanol-rich envi-
ronments, while segments stabilized by electrostatic or covalent in-
teractions retain their rigidity. Solvation analyses using MDDF and KD
integrals demonstrate a clear, residue-dependent remodeling of the
protein’s hydration shell: water forms a compact, stabilizing layer in
pure aqueous conditions, while ethanol progressively displaces water
and preferentially solvates hydrophobic and flexible polar regions. PCA
provides a global perspective, showing that solvent composition criti-
cally shapes the conformational landscape of a-gliadin. Lower ethanol
concentrations favor compact, convergent conformational basins,
whereas higher ethanol levels promote greater conformational diversity
and the sampling of multiple distinct minima. These global motions are
driven by the same flexible regions identified in RMSF and SASA ana-
lyses, highlighting a direct link between local flexibility and large-scale
structural transitions.

These findings provide deeper insights into the behavior of a-gliadin
in food processing and potential immunogenicity, offering valuable in-
sights for improved gluten extraction and immune responses mitigation
strategies. Collectively, our results provide new molecular-level insights
into the solvent-dependent dynamics of a-gliadin, with implications for
its solubility, functional properties in food processing, and the accessi-
bility of immunogenic epitopes relevant to celiac disease. This work not
only advances our understanding of the structural plasticity of intrinsi-
cally disordered food proteins but also establishes a computational
framework for future studies aimed at modulating gluten protein
properties for enhanced food functionality and reduced immunoge-
nicity. However, the absence of an experimentally determined a-gliadin
structure and the complexity of real gluten environments beyond
ethanol-water mixtures introduce certain limitations. Future research
should focus on integrating experimental data for further refinement,
exploring other food-relevant solvent conditions, and extending ana-
lyses to other gliadin isoforms and glutenin proteins. Such efforts will
improve our fundamental understanding of gluten behavior, ultimately
benefiting both food technology and health.
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