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A B S T R A C T

This study aimed to establish NIR spectroscopy models for fast predicting apparent amylose (AA) and total starch 
(TS) content in SSK. Reliable wet chemistry procedures for quantifying TS and AA in single sorghum kernel (SSK) 
were established, which achieved high accuracy with test errors below 1.0 %. The partial least squares (PLS) 
model with 2 latent variables (LVs) for AA prediction had coefficients of determination of 0.91 (R2

cal) and 0.85 
(R2

cv), and root mean square errors (RMSE) of 1.90 % and 2.47 % for calibration (RMSEC) and cross-validation 
(RMSECV), respectively. It showed an R2

pred of 0.83 and RMSE of 2.58 % for prediction (RMSEP) when validated 
with the independent validation set. The optimal SSK-TS NIR PLS calibration model was built from 187 cali
bration sorghum kernels with 10 LVs, which had a R2

cal of 0.79, RMSEC of 2.76 % and RMSECV of 4.93 % and 
showed a R2

pred of 0.72 and RMSEP of 3.19 % when applied to an independent validation set of 93 samples. 
Overall, this study successfully developed wet chemistry methods for measuring AA and TS contents in SSK and 
established NIR models for nondestructive prediction and sorting of sorghum kernels by their TS or AA content, 
serving as useful tools for sorghum breeding and application research.

1. Introduction

Sorghum (Sorghum bicolor), the fifth largest cereal crop in the world 
after wheat, maize, rice, and barley, is widely cultivated in various re
gions and valued for its resilience to drought and adaptability to diverse 
environments (Dykes et al., 2014). Sorghum is a staple food for many 
communities, particularly in Africa and Asia, while in the USA and 
Australia, it is primarily used as animal feed and for ethanol production 
(Rashwan et al., 2021). Recently, the global consumption of sorghum as 
a gluten-free food source has been on the rise, driven by their numerous 
health benefits, including cholesterol-lowering effects, anti- 
inflammatory properties, slow digestibility, and potential anti-cancer 
effects (Gasiński et al., 2023; Ofosu et al., 2020; Sullivan et al., 2018).

Starch is the main component of sorghum grain, which comprises 
two distinct categories of molecules: amylose (mainly linear, MW up to 
106 Da with few branches) and amylopectin (highly branched with MW 
around 107–109 Da). Amylose content and structural features of 
amylopectin significantly affect physicochemical properties of starch as 
well as the quality and applications of cereal crops (Sheng & Wei, 2022). 
As a result, considerable efforts have been dedicated to managing and 
manipulating starch content and composition in sorghum (Chen et al., 

2019; Yerka et al., 2016).
Research has demonstrated considerable compositional variations 

among cereal kernels of the same variety from the same field, driven by 
both genetic and environmental factors (Armstrong, 2014; Delwiche, 
1995; Zheng et al., 2024). Such compositional variations among cereal 
kernels have not been studied due to the lack of technology to differ
entiate and sort kernels out by their composition. One of the main 
challenges is the ability to assess starch composition at the single-kernel 
level without destroying seeds, which is essential for early-stage 
breeding and potential application research. Traditional wet chemistry 
methods for assessing starch and amylose content are time-consuming 
and destructive to sorghum seeds (Chrastil, 1987; Megazyme, 2024). 
With the advancement of non-destructive analytical technologies, faster 
and more sustainable alternatives are replacing conventional methods 
(Delwiche, 1995; Delwiche & Massie, 1996; Liu et al., 2022).

Near infrared reflectance (NIR) spectroscopy is a quick and non- 
destructive technology, which has been applied for measuring major 
components of cereal grains and other agricultural materials for decades 
(Tomar et al., 2025). However, most NIR models were developed for 
predicting chemical compositions in bulk samples (Huang et al., 2021; 
Peiris et al., 2021; Zerihun et al., 2020). These samples are often ground 
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before analysis, thus information about individual kernel characteristics 
is lost (Delwiche, 1995). Currently, several studies have only explored 
the use of NIR models to predict the chemical composition (mainly 
protein, oil, etc.) of single kernels in wheat, maize, and soybean, etc. 
(Bramble et al., 2006; Delwiche & Massie, 1996; Spielbauer et al., 2009), 
while no research has been conducted on sorghum starch at single kernel 
level. Therefore, developing non-destructive NIR-based detection 
models for differentiating chemical compositions in SSK could be 
beneficial to advancing sorghum breeding and sorghum application 
research. Moreover, the absence of reliable quantitative methods for 
assessing starch information in SSK poses a significant challenge in 
establishing stable and accurate NIR prediction models. This study hy
pothesizes that, with reliable procedures to measure starch and amylose 
contents in SSK, we would be able to effectively predict total starch or 
amylose levels in SSK using SK-NIR technology. This approach facilitates 
non-destructive detection of starch content in individual sorghum ker
nels and allows for accurate classification based on their starch 
composition.

This study has two main objectives: first, to establish wet chemistry 
methods for quantifying total starch (TS) and apparent amylose (AA) 
content in SSK, and second, to develop capable NIR models for pre
dicting the TS and AA content in SSK. Specifically, NIR spectra are 
collected from SSK samples, followed by quantification of their AA and 
TS contents. Various spectral pretreatment techniques and PLS regres
sion are used to develop calibration and prediction models to predict TS 
and AA contents in sorghum kernels, which will provide valuable tools 
for the screening of sorghum seeds for both sorghum breeding and 
application projects.

2. Materials and methods

2.1. Grain samples

Sorghum kernels were from 89 sorghum hybrids and inbred lines 
harvested from the 2018–2021 crop years in Texas, Nebraska, and 
Kansas.

2.2. Chemicals and reagents

Mazie starch, potato amylose reference, glucose standard, and K- 
TSTA-100 A kit were from Megazyme International Ireland Ltd. (Bray 
Co., Wicklow, Ireland). Dimethyl sulfoxide (DMSO, chromatographic 
grade) was purchased from Thermo Fisher Scientific Inc. (Waltham, MA, 
USA). NaOH, KI, urea, trichloroacetic acid (TCA), and amylopectin 
standard (#10120) were purchased from Sigma Chemical Co. (St. Louis, 
Mo., USA). Iodine was from Mallinckrodt Chemical. (St. Louis, Mo., 
USA).

2.3. NIR spectra acquisition

A custom-built NIR instrument was used to collect spectra of indi
vidual sorghum seeds in motion. A detailed overview of this instrument 
and the spectral data collection process can be found in a paper authored 
by Armstrong (2014). The system featured a 908–1689 nm InGaAs- 
based spectrometer (CD NIR-256-1.7 T1, Control Development, South 
Bend, IN). Two fiber-optic cables were positioned at each end of an in
clined, 8 mm diameter glass tube to collect reflected light from seeds 
passing through. The tube was illuminated by 48 miniature halogen 
lamps positioned along its length and circumference. Three NIR spectra 
were collected for each kernel from 940 to 1640 nm at 1 nm intervals 
and the average of the three was stored in MATLAB (ver. R2024b; 
MathWorks Inc., Natick, MA, USA) for further analysis.

2.4. Determination of TS and AA in SSK

After NIR spectra were collected, the SSK was oven dried at 130 ◦C 

for 20 h (ASAE, 2017) and then crushed for three cycles (1 min per cycle) 
in a 4-mL polyethylene vial with one 9.5 mm stainless steel grinding ball 
on a Genogrinder (Model2010, Metuchen, NJ). The crushed sample was 
mixed thoroughly with 1.0 mL of 90 % DMSO solvent at room temper
ature for 30 min. To ensure complete dissolution of the starch, the 
mixture was heated to 100 ◦C for 30 min before sampled for TS and AA 
analysis. The heated SSK-90 % DMSO mixtures of a test sorghum sample 
and the standard maize starch were examined under a polarized light 
microscope to ensure complete dissolution. In this study, 1/8 of the 
weight of the SSK-90 % DMSO mixture solution was used for TS and the 
remaining 3/8 for AA content analysis. Each test was conducted in 
duplicate and the difference between two replicates kept within 1.0 % 
for both TS and AA content.

2.4.1. Determination of TS content in SSK
The TS content was determined using the Megazyme K- TSTA-100 A 

kit (Bray, Ireland) with minor modifications (Megazyme, 2024). The 1/8 
mixture portion was mixed with 1.0 mL of 1.7 M sodium hydroxide for 
15 min. Subsequently, 4.0 mL of sodium acetate buffer (pH 3.8) was 
added to adjust the pH to 5.0. The samples were then hydrolyzed with 
0.1 mL thermostable α-amylase and 0.1 mL amyloglucosidase at 50 ◦C 
for 30 min. After centrifugation at 1300 rpm for 5 min, 0.1 mL of the 
hydrolysate was combined with 3.0 mL of GOPOD (glucose oxidase 
peroxidase) reagent and incubated at 50 ◦C for 20 min. The absorbance 
at 510 nm was measured against a reagent blank to calculate the percent 
starch content in the SSK sample.

2.4.2. Determination of AA content in SSK
AA content in SSK samples was quantified colorimetrically based on 

a previous reported procedure (Chrastil, 1987; Peiris et al., 2021) with 
minor modifications to fit the small sample size of SSK. To accommodate 
AA contents in sorghum samples of different genotypes, varying vol
umes of a 90 % DMSO:0.6 M urea solution (0.2, 0.6–0.8, and 1.0 mL for 
waxy, heterowaxy, and regular) were used to dilute the SSK-90 % DMSO 
mixture to achieve appropriate absorbance values. The diluted solutions 
were then heated at 100 ◦C for 30 min. After cooling to room temper
ature, absorbance at 620 nm (A620) was recorded after 100 μL of the 
above DMSO sample mixture was mixed with 5.0 mL TCA solution (0.5 
%) and 100 μL of KI-I2 solution (0.01 N) for 30 min. The amylose content 
in each sample kernel was calculated by comparing its A620 with that of 
a standard curve prepared with known amylose and amylopectin 
contents.

2.5. Spectral pretreatment and model optimization

In this study, NIR spectra were collected from a total of 430 sorghum 
kernels picked from samples of diverse genetic background. Results with 
a test error of less than 1.0 % between duplicate were used for AA (376) 
and TS (280) model development. Each dataset was then divided into 
calibration (70 %) and validation (30 %) sets prior to modeling. To 
correct the effects caused by light scattering, intensity differences, 
baseline shifts, and to enhance signal-to-noise ratio, dozens of individual 
and combined pretreatment methods were tested for model optimiza
tion using the DEVINER function of the PLS Toolbox 9.5 (Eigenvector 
Research Inc., Manson, WA) to preprocess the NIR spectra. Common 
pretreatment methods such as autoscale, baseline, scaling, extended 
multiplicative scatter correction (EMSC), external parameter orthogo
nalization (EPO) and extended mixture model (EMM) filter, generalized 
least squares weighting (glsw), mean center, multiplicative scatter 
correction (MSC, mean), normalize, smoothing (SavGol), SNV, etc. and 
different latent variables (LVs) were used, which are described in detail 
in supplementary materials (S1, S2). PLS models were evaluated by their 
RMSE of calibration, cross-validation, and prediction (RMSEC, 
RMSECV, and RMSEP) and determination coefficient for calibration, 
cross-validation, and validation (R2

cal, R2
cv, and R2

pred). Those terms are 
defined by Eq. (1) and Eq. (2) below (Simeone et al., 2024): 
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R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(2) 

Where ŷᵢ is the prediction value of the i-th sample, yi is the measured 
value of the sample, n is the number of samples, ȳ is the mean of the 
measured values of the dependent variable, and Σ represents the sum of 
all the values. Eq. (1) can compute the R2

cal, R2
cv, and R2

pred, and Eq. (2)
compute the RMSEC, RMSECV, and RMSEP values.

2.6. Statistical analysis

Spectral data analyses were conducted using MATLAB (ver. R2024b; 
MathWorks Inc., Natick, MA, USA). Samples for the calibration set were 
selected and outliers identified from the score scatter plot for the cali
bration samples provided by the PCA, using Hotelling’s ellipse at the 95 
% confidence level and a plot of Hotelling T2 (HT2) vs. Q Residuals (QRs) 
(Cárdenas et al., 2015). Graphical presentations were done in Origin 
software (Origin2024, Northampton, MA, USA).

3. Results and discussion

3.1. Wet chemistry quantification of TS and AA in SSK

Moisture content (%) and dry weight (mg) of SSK were collected 
before wet chemistry analysis. Fig. 1 shows that the moisture content of 
SSK ranges from 4.0 % to 18.3 % and dry weight from 12.8 to 49.1 mg, 
with both following a normal distribution. Results in Fig. 1 show a mean 
of 10.63 % with a standard deviation of 2.38 % for moisture content and 
a mean of 26.63 mg with a standard deviation of 6.36 mg for dry weight.

For AA and TS measurement, the maize starch from Megazyme (85.0 
% TS, 28.5 % AA) serves as references. A comparison of the laboratory 
test results with the reference values for TS and AA in commercial maize 
starch (n = 10) reveals an error of less than 1.0 % (data not shown), 
indicating that the methods for TS and AA quantification established in 
this study are reliable. The results show that the AA and TS contents of 
SSK are distributed between 0 and 22.0 % and 37.1–73.9 % (dw), 
respectively. The AA content in sorghum grains is related to wax gene 
regulation. The wax gene encodes granule-bound starch synthase 

(GBSS), an enzyme responsible for synthesizing amylose within starch 
granules (Wirnas et al., 2024). Generally, the endosperm of waxy sor
ghum contains three recessive waxy genes, heterowaxy sorghum con
tains at least one recessive gene, and normal sorghum does not contain 
recessive waxy genes (Sang et al., 2008; Yerka et al., 2016). This genetic 
variation could explain why SSK with amylose content between 5 and 
10 % is rare. The correlation between TS and AA content in SSK is shown 
in Fig. 2. The results show that AA content in sorghum kernels does not 
correlate with TS content below 5 % (R2 = 0.001) but shows a weak 
positive correlation (R2 = 0.392) when TS content exceeds 5 %.

So far, methods for quantification of TS and AA in SSK have not been 
reported yet. The main reason is that SSK sample size is small and varies 
a lot, and it is difficult to crush and collect samples for subsequent 
analysis using general milling equipment. Accurately splitting the tiny 
amount of crushed SSK sample for simultaneously measuring both TS 
and AA presents additional challenge. In this study, the bead crushing 
process effectively breaks the sorghum grains into fine powder, which 
makes it possible for the starch to be fully dissolved in DMSO (Fang 
et al., 2006; Syahariza et al., 2010). DMSO acts as a hydrogen bond 
acceptor, effectively facilitating the dispersion of starch by disrupting 
both intermolecular and intramolecular hydrogen bonds among 
amylose and amylopectin molecules and between starch granules and 
water. It replaces the hydrogen bonds between starch and hydroxyl 
groups with new bonds between DMSO and starch, enhancing the sol
ubility of the starch (Fang et al., 2006). Studies have also demonstrated 
that adding a small amount of water (10 % water in this study) or low- 
molecular-weight electrolytes (such as LiBr, Urea, or NaNO3) in DMSO 
can enhance starch solubility, which is why a 90 % DMSO solution was 
used in this research (Chuang & Sydor, 1987; Lv et al., 2024).

Images in Fig. 3 showed the birefringence (Maltese cross) phenom
enon of both SSK- (a, b, c) and maize starch samples (d, control) in 90 % 
DMSO solution. Fig. 3a, b, and c represent the 90 % DMSO solution of 
SSK crushed for 1, 2, and 3 min, respectively. It can be observed that as 
the crushing time increases from 1 to 3 min, the observed Maltese 
crosses decrease, suggesting that longer crushing times facilitate the 
dissolution of sorghum starch in the 90 % DMSO solution. After further 
heating at 100 ◦C for 30 min, the Maltese cross disappears completely (e, 
f, g, h). This observation confirms that the bead crushing procedure, 
combined with the use of 90 % DMSO as a solvent, effectively dissolves 
the starch granules in the SSK.

Fig. 1. Dry weight (DW, mg), moisture content (MC, %), total starch (TS, %) 
and apparent amylose (AA, %) content in sorghum single kernel (SSK) samples.

Fig. 2. Scatter plot between total starch (TS) and apparent amylose (AA) 
contents of sorghum grain.
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3.2. Performance evaluation of the NIR models

Scanning seeds in motion likely yield better results than static 
measurements, primarily because the scattering effects are minimized 
during the movement of the seeds, thereby reducing variability caused 
by differences in seed shape and size (Agelet & Hurburgh, 2014). After 
NIR raw data collection, pretreatment of spectral data is a crucial step 
before PLS algorithm modeling, which greatly reduce the baseline 
shifting and non-linearity caused by light scatter and improve the per
formance of multivariate regressions (Beć et al., 2025; Rinnan et al., 
2009). Fig. 4 shows some of the common pretreatment techniques in NIR 
spectra, including various scatter correction methods and derivatiza
tion. To identify the most suitable NIR model for predicting AA and TS 
content in SSK, this study examines the effects of both individual and 
combined pretreatment techniques on the performance of the NIR 
calibration and prediction models.

A total of 6920 models with different pretreatment techniques and 
numbers of LVs (AA, see S1 file; TS, see S2 file) were evaluated using 
PLS_Tool box’s DEVINER function based mainly on model’s RMSEC, 
RMSECV, RMSEP values (Fig. 5). The SSK-AA-NIR models (Fig. 5a) with 
1–10 PLS LVs from 376 sample spectra (calibration dataset 251, vali
dation dataset 125) have RMSEC values between 0 % and 6 % (mostly 
within 1–4 %) and RMSEP values between 2 % and 8 % (mostly 2–4 %). 
The increase of LVs had little effect on RMSECV/RMSEC and PMSEP, 
which remained between 0 and 6 % and 2–6 %, respectively (Fig. 5b and 
c).

General criteria for model selection are low and comparable RMSEC 
and RMSEP values, as a small difference indicates good calibration and 
validation performance and a large discrepancy (RMSEP much larger 
than RMSEC) may suggest possible overfitting (Simeone et al., 2024). 
Close value between RMSEC and RMSECV, RMSEC and RMSEP indicate 
that the multivariate model estimates align well with the reference 
values, confirming the adequacy of spectral pretreatment and LV se
lection with little risk of overfitting (dos Santos et al., 2021). For better 
evaluation of the NIR model performance, the ratio between RMSEC and 
RMSECV, RMSEC and RMSEP were introduced. The results in Fig. 5d 
show that most models have a RMSECV/RMSEC between 0.8 and 1.2 %, 
and a RMSEC/RMSEP between 0.8 and 1.0 %. This suggests that the 
RMSECV and RMSEP value are very close to RMSEC, indicating no 
overfitting in most of the SSK-AA-NIR calibration models.

The SSK-TS-NIR models with 1–10 PLS LVs were built on 280 sample 
spectra with 187 for calibration and 93 for validation, which had RMSEC 

values between 0 % and 6.5 % (mostly 3–5 %), and RMSEP values be
tween 4 % and 10 % (mostly 4–7 %) (Fig. 5e). The ratio of RESECV and 
RMSEC increases with the increase of LVs, but RMSEP has no significant 
increase (Fig. 5f and g). Results in Fig. 5h reveal that most models 
display an RMSECV/RMSEC ratio between 1.0 and 1.5, along with an 
RMSEC/RMSEP ratio between 0.8 and 1.0. The similarity of RMSECV 
and RMSEP values to RMSEC indicates that there is also no overfitting in 
most of the SSK-TS-NIR calibration models. Overall, most AA-NIR 
models have lower RMSEC and RMSEP values compared to TS-NIR 
model parameters, indicating that the AA NIR models in this study 
performed better than TS NIR models.

3.3. SSK-AA-NIR model determination

Six models were selected from the 6920 models (S1) to predict AA 
content in SSK where the RMSEC, RMSECV and RMSEP values were 
lower than 2.0, 2.5 and 3.0, respectively (Table 1). The results in Table 1
show that NIR spectrum after preprocessed by normalization (inf-norm, 
maximum = 1) or MSC (mean) + glsw (α = 0.02) resulted in models with 
good performance.

Among these pretreatment methods, normalization is a common 
method to address multiplicative scaling in NIR spectra, with techniques 
like 1-norm, 2-norm, and inf-norm. When using inf-norm (maximum =
1), each sample is scaled to the maximum value observed across all 
variables, normalizing the largest value to one and excluding smaller 
values from the scaling. In another study, inf-norm (maximum = 1) was 
used to preprocess NIR spectra and improve the model’s predictive 
performance for tannins in Acacia mearnsii bark (Menezes et al., 2014). 
MSC is a transformation technique that compensates for both additive 
and multiplicative distortions in NIR spectra. It removes physical in
fluences that do not provide meaningful chemical or physical informa
tion such as particle size and surface blaze, thus improves the accuracy 
of subsequent spectral analysis (Maleki et al., 2007). In addition, glsw 
utilizes the eigenvalues and eigenvectors of a covariance matrix to 
down-weight signals that are influenced by interferences or discrep
ancies between samples (Sun et al., 2023).

The NIR model preprocessed by normalization (inf-norm, maximum 
= 1) + glsw (α = 0.02) shows the best AA prediction performance when 
using PLS with 2 LVs. The scatter plots (predicted AA content against 
measured AA) of NIR data are shown in Fig. 6. HT2 and QRs are calcu
lated at the 95 % confidence level. As can be seen from Fig. 6a, none of 
the NIR spectra exceeds the 95 % confidence level of HT2 and QRs. In 

Fig. 3. Birefringence images for SSK and maize starch granules dissolved in 90 % DMSO solvents after different crush cycles (1,2,3) and heating process (100 ◦C, 30 
min). Note: Image a), b), c) corresponds to SSK crushed 1, 2, and 3 cycle dissolved in 1.0 mL 90 % DMSO for 30 min respectively; Image d), maize starch dissolved in 
1.0 mL 90 % DMSO for 30 min; Image e), f), g), and h) corresponds to the solution of a), b), c) and d) after heating at 100 ◦C for 30 min.

J. Zhou et al.                                                                                                                                                                                                                                    Carbohydrate Polymers 368 (2025) 124257 

4 



addition, leverage versus Studentized residuals charts are built in Fig. 6b 
and there are no points in critical region over ±3 limit Studentized re
sidual and 3LV/m limit Leverage. Samples presenting high-Studentized 
residuals and Leverage values above a critical value are considered 
outliers (Pedro & Ferreira, 2007), the results indicates that all spectra 
are acceptable for subsequent analysis. The results in Fig. 6c show the 
AA calibration model from 251 sorghum kernel spectra with 2 PLS LVs 
had a R2

cal of 0.91, R2
cv of 0.85, RMSEC of 1.90 % and RMSECV of 2.47 %, 

which achieved a R2
pred of 0.83 and RMSEP of 2.58 % when used to 

predict the AA content in an independent set of 125 sorghum kernels. 
Fig. 6c and Fig. 6d show that the calibration and validation sets are 
evenly distributed in the feature space, ensuring the model captures 
sufficient information across the entire data range (0–5 %, 10–22 %), 
thus ensuring prediction reliability. These results demonstrate that a 
reliable NIR model for predicting AA content at the single-kernel level of 
sorghum has been successfully established, which fills the gap in the 
application of NIR for predicting starch content at the single-kernel level 
in sorghum, a method that has previously only been reported for wheat, 
rice, corn, and soybean. Wu and Shi (2004) established a prediction 
model for single kernel rice weight, brown rice weight and polished rice 
amylose content using NIR, with prediction standard errors of 2.82, 1.09 
and 1.30, and R2 of 0.85, 0.71 and 0.67, respectively, which has 

potential advantages for rice breeding. Agelet et al. (2012) reported the 
use of NIR to differentiate normal or vigorously germinating corn ker
nels and soybean seeds from abnormal or dead seeds. In addition, NIR- 
based prediction of sorghum amylose content has been reported, but it 
has been limited to bulk or flour samples rather than at the single-kernel 
level. For example, the previous study developed a model for predicting 
AA content in sorghum bulk meal samples using NIR spectra, achieving 
an R2cal of 0.84, an RMSECV of 2.96 %, an R2pred of 0.76, and an 
RMSEP of 2.60 % based on 102 calibration and 51 independent samples 
(Peiris et al., 2021). Zerihun et al. (2020) developed a model for pre
dicting AA content in sorghum grains using NIR spectra of sorghum flour 
samples, achieving a R2cal of 0.76, RMSEC of 0.27 %, and a R2pred of 
0.69. Huang et al. (2021) employed hyperspectral imaging (HSI) to 
establish a model for predicting AA contents in sorghum, with the best 
model achieving a residual predictive deviation (RPD) value of 5.59 and 
RMSEP of 0.47 %. These models were based on the average spectrum 
and AA content of bulk sorghum samples. Our study successfully 
developed applicable models for predicting AA content in SSK.

The results in Fig. 6c also show that the predicted AA values for some 
SSK samples are negative, while the measured AA values in these sor
ghum grains are very low. This indicates that NIR can relatively accu
rately predict grains with high AA content, but the predictions become 

Fig. 4. NIR raw spectral curve (940–1640 nm) and preprocessing using stated techniques for modeling.
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less accurate when the measured AA values are very low. It also should 
be noted that SSK samples with AA content ranging from 5 to 10 % are 
relatively rare. Adding sorghum seeds with 5–10 % AA content to the 
model’s calibration dataset may improve the model’s prediction 
performance.

3.4. Contribution of the spectral variables to SSK AA-NIR model

Evaluating the contribution of spectral variables to PLS models is 
crucial to ensure that the key wavelengths are related to the spectro
scopic signals of the target molecule, which confirms the validity of the 
NIR spectroscopy model (Peiris et al., 2021). The NIR spectrum pre
processed with normalize (inf-norm, maximum = 1) + glsw (α = 0.02) is 
shown in Fig. 7a.

The variable influence on projection (VIP) score is applied to high
light the contribution of spectral variables to the PLS models, as shown 
in Fig. 7b. The circle marks in the spectrum represent the characteristic 

peaks that have a great contribution to the NIR model for SSK-AA con
tent prediction. The peaks near 960 and 1000 nm are the characteristic 
wavelengths of amylopectin, and the peaks near 980, 1400, and 1600 
nm are the characteristic wavelengths of amylose (de Alencar Figueiredo 
et al., 2006; Huang et al., 2021). The characteristic peak differences 
between amylose and amylopectin arise from their distinct molecular 
structures. Amylose is composed of a linear chain of glucose units con
nected by α (1–4) glycosidic bonds, while amylopectin consists of a 
similar linear chain with approximately 5 % α (1–6) branching bonds, 
resulting in a branched structure (Tester et al., 2004). The α (1–6) bond 
in amylopectin involves a sixth carbon atom of glucose that forms a 
linkage with a CH2 group at one end, which connects to an oxygen atom, 
and to the fifth carbon of the adjacent glucose unit at the branching 
point. This CH2 group may exhibit different vibrational frequencies 
compared to the CH2 groups in the linear glucose units (Peiris et al., 
2021). Overall, the AA model can predict the AA content by utilizing the 
interaction of key NIR wavelengths with AA molecules in SSK, which can 

Fig. 5. AA (a, b, c, d) and TS (e, f, g, h) NIR models (totaling 6920 models) performance evaluation parameters visualization. Note: AA (apparent amylose), TS (total 
starch), RMSEC, RMSECV, and RMSEP are root mean square error of prediction, cross-validation, and prediction, respectively, Nlvs, number of latent variables.

Table 1 
Key chemometric terms and features of selected SSK-NIR models for AA prediction.

Calibration set Cross-validation set Validation set

PLS LVs Pretreatment techniques RMSEC % R2 RMSECV % R2 RMSECV/RMSEC RMSEP % R2 RMSEC/RMSEP

3 N + G + M 1.77 0.92 2.38 0.86 1.34 2.74 0.82 0.65
5 N + G + M 1.69 0.93 2.43 0.85 1.44 2.99 0.79 0.57
3 M + G + M 1.93 0.91 2.48 0.85 1.45 2.670 0.82 0.56
2 M + G + M 2.02 0.90 2.45 0.85 1.21 2.66 0.82 0.76
4 N + G + M 1.71 0.93 2.45 0.85 1.43 2.92 0.80 0.59
2 N + G + M 1.90 0.91 2.47 0.85 1.30 2.580 0.83 0.74

Note: N + G + M: Normalization (inf-norm, maximum = 1) + glsw (α = 0.02) + Mean center; M + G + M: MSC (mean) + glsw (α = 0.02) + Mean center. R2 (coefficient 
of determination); RMSEC, RMSECV, and RMSEP are root mean square error of calibration, validation, and prediction, respectively.
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further improve the efficiency of data collection and processing.

3.5. SSK-TS-NIR model determination

Four models are obtained from all pretreatment methods (S2) when 
the RMSEC, RMSECV, and RMSEP values were all set lower than 5.0 
(Table 2). The results in Table 2 demonstrate that various pretreatment 
techniques, including autoscale, mean center, epo/emm filter + mean 
center, and smoothing (order: 0, window: 21 pt., tails: polyinterp) +
mean center, enhanced the development of the SSK-TS-NIR model. 

Compared to other pretreatment techniques, the NIR model pre
processed with the epo/emm filter + mean center exhibits lower RMSEC 
and RMSEP values when using PLS with 10 LVs. The epo filter is used to 
eliminate or at least minimize the effects of extraneous variables or 
variables (such as moisture) not relevant to the system under study on 
the NIR spectra, while the emm filter is able to identify unwanted 
covariance structures and remove these sources of variance from the 
data before calibration or prediction, thereby strengthening the TS-NIR 
prediction model performance (Kunze et al., 2021; Liu et al., 2015).

The scatter plots of predicted TS content from NIR versus measured 

Fig. 6. Scatter plots of the predicted AA content against the measured AA content in SSK, with NIR calibration data (grey circles) and validation data (red circles). 
Chemometric techniques used: Normalization (inf-norm, maximum = 1), glsw (α = 0.02), mean center. Note: AA (apparent amylose), R2 (coefficient of determi
nation); RMSEC, RMSECV, and RMSEP are root mean square error of calibration, validation, and prediction, respectively.

Fig. 7. (a) NIR spectra of AA-NIR after pretreatment with normalization (inf-norm, maximum = 1), glsw (α = 0.02), mean center; (b) Vip scores for AA prediction 
model. Note: AA (apparent amylose).
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TS content are shown in Fig. 8. As shown in Fig. 8a, none of the NIR 
spectra exceed the 95 % confidence level for HT2 and QRs, and Fig. 8b 
shows no points in the critical region beyond the ±3 limit for Studen
tized residuals or the 3LV/m limit for Leverage, indicating that all 
spectra are acceptable for building the SSK-TS-NIR models. The results 
in Fig. 8c show the TS calibration model with 10 PLS LVs based on 187 
SSK spectra have a R2

cal of 0.79, R2
cv of 0.40, RMSEC of 2.77 % and 

RMSECV of 4.93 %, which obtains a R2
pred of 0.72 and RMSEP of 3.19 % 

when applied to predict the TS content on an independent set of 93 
sorghum kernels. Although 10 LVs were selected, the RMSEC/RMSEP 
ratio of 0.87 indicates that the model is not overfitted. The results in 
Fig. 8c and Fig. 8d indicate that the calibration and validation sets are 
uniformly spread across the feature space, which ensure the model to 
effectively capture the spectral information in the full data range (TS 
content from 40 to 75 %) and lead to a more reliable prediction model.

Several studies have also reported using NIR models to predict starch 
content in bulk sorghum samples, but none was on starch content of 
single sorghum kernel. For instance, Zerihun et al. (2020) developed an 
NIR model to predict starch content in sorghum flour with R2

cal of 0.98, 
RMSE of 0.44, and R2

pred of 0.91. Our previous study used sorghum grain 

samples (20 g of grains each sample) to establish sorghum TS calibration 
model (11 PLS LVs) with a R2

cal of 0.87 and RMSECV of 1.57 % and R2
pred 

of 0.76 and RMSEP of 2.13 % on the validation set (Peiris et al., 2021). 
These models only work on bulk sorghum kernels or ground sorghum 
meals, not for SSK. Furthermore, Fig. 8 reveals a limited distribution of 
grains with TS below 50 % and above 70 %, suggesting that incorpo
rating additional data in these ranges could further enhance the model’s 
predictive accuracy.

3.6. Contribution of the spectral variables to SSK TS-NIR model

The NIR spectrum preprocessed with epo/emm filter + mean center 
are shown in Fig. 9a. The VIP score is applied to highlight the contri
bution of spectral variables to the SSK TS-NIR PLS models (Fig. 9b). In 
Fig. 9b, key absorption peaks are identified at approximately 960, 990, 
1030, 1130, 1370, 1490, and 1620 nm.

These peaks are likely associated with starch molecular vibrations, 
particularly C–H and O–H bonds. A comparison with known spectral 
features suggests that the peak near 990 nm corresponds to the second 
overtone of the O–H stretch in starch (Huang et al., 2021), while peaks 

Table 2 
Key chemometric terms and features of selected SSK-NIR models for TS prediction.

Calibration set Cross-validation set Validation set

PLSLVs Pretreatment techniques RMSEC% R2 RMSECV% R2 RMSECV/RMSEC RMSEP % R2 RMSEC/RMSEP

7 Autoscale 4.05 0.56 4.55 0.46 1.12 3.97 0.60 1.02
10 Mean center 3.59 0.69 4.50 0.51 1.25 4.16 0.55 0.86
8 S + Mean center 4.43 0.52 4.90 0.42 1.16 4.30 0.53 1.03
10 Epo/emm filter (1 pcs), Mean center 2.77 0.79 4.93 0.40 1.78 3.19 0.72 0.86

Note: S + Mean center: Smoothing (order: 0, window: 21 pt., tails: polyinterp) + Mean center. R2 (coefficient of determination); RMSEC, RMSECV, and RMSEP are root 
mean square error of calibration, validation, and prediction, respectively.

Fig. 8. Scatter plots of the predicted TS content against the measured TS content in SSK, with NIR calibration data (grey circles) and validation data (red circles). 
Note: TS (total starch), R2 (coefficient of determination); RMSEC, RMSECV, and RMSEP are root mean square error of calibration, validation, and prediction, 
respectively.
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at 1130 nm and 1370 nm relate to the combination of C–H stretching 
and C–H deformation, and the second overtone of C–H stretching 
(Camilotti et al., 2014). Similarly, 1030 nm and 1490 nm are likely 
attributed to C–H stretching and deformation overtones. The 1620 nm 
peak is associated with the first overtone of C–H stretching (Bantadjan 
et al., 2020; Williams, 2001). Starch molecules feature many C–H or 
O–H bonds that contribute greatly to NIR absorption (Lanjewar et al., 
2024). Therefore, it is possible to develop an NIR model to predict TS 
content of SSK samples by utilizing these key NIR wavelengths.

4. Conclusion

This study successfully establishes protocols to accurately measure 
both AA and TS content of SSK, which are critical in developing reliable 
NIR models for predicting TS and AA in sorghum seeds. This method can 
be further used to measure other chemical components in grain seeds. By 
using PLS algorithms and various pretreatment methods, we established 
NIR models for predicting TS and AA at a single kernel level for the first 
time. Different pretreatment methods greatly affect the model predic
tion parameters, the normalize (inf-norm, maximum = 1) + glsw (α =
0.02) and epo/emm filter + mean centering are found to be most suit
able for AA and TS prediction models, respectively. The AA-NIR pre
diction model showed high accuracy (R2 of 0.8–0.9) and can be used to 
predict AA content in sorghum breeding programs and to sort waxy, 
heterowaxy, and normal sorghum kernels. The TS-NIR prediction model 
performs less accuracy (R2 of 0.7–0.8) than the AA-NIR model, while its 
performance could be enhanced by including SSK samples with less than 
50 % and more than 70 % TS content. Overall, the developed NIR models 
in this study could be useful tools for estimating and sorting sorghum 
kernels by their AA and TS contents and describe their characteristic 
distribution profiles, which have great potential in sorghum breeding 
programs and application research.
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