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Wheat is one of the most widely cultivated crops throughout the world. A great
need exists for wheat quality assessment for breeding, processing, and prod-
ucts production purposes. Near-infrared spectroscopy (NIRS) is a rapid, low-cost,
simple, and nondestructive assessment method. Many advanced studies associ-
ated with NIRS for wheat quality assessment have been published recently, either
introducing new chemometrics or attempting new assessment parameters to
improve model robustness and accuracy. This review provides a comprehensive
overview of NIRS methodology including its principle, spectra pretreatments,
spectral wavelength selection, outlier disposal, dataset division, regression meth-
ods, and model evaluation. More importantly, the applications of NIRS in the
determination of analytical parameters, rheological parameters, and end product
quality of wheat are summarized. Although NIRS showed great potential in the
quantitative determination of analytical parameters, there are still challenges in
model robustness and accuracy in determining rheological parameters and end
product quality for wheat products. Future model development needs to incorpo-
rate larger databases, integrate different spectroscopic techniques, and introduce
cutting-edge chemometrics methods. In addition, calibration based on exter-
nal factors should be considered to improve the predicted results of the model.
The NIRS application in micronutrients needs to be extended. Last, the idea of
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1 | INTRODUCTION

Wheat is one of the most widely cultivated crops world-
wide, and its cultivated area and production reached 222.63
million hectares and 772.38 million tons in 2020, respec-
tively (USDA, 2020). Approximately 65% of wheat is used
for human consumption, though it is also widely utilized as
feed, energy production, and nonfood industries (Gabriel
et al., 2017). Depending on different end uses, quality clas-
sification based on wheat compositions or functionalities
has been developed in many countries (Gabriel et al., 2017;
Salimi Khorshidi et al., 2018). However, these classifica-
tion methods are general and do not allow precise quan-
titative quality assessment. Breeders, millers, bakers, and
other end users demand precise quantitative assessments
of wheat, because quality has a great impact on breed-
ing, processing, and marketing, and precise quantitative
assessment allows maximum utilization of kernel, flour,
and dough (Cevoli et al., 2015; Dowell et al., 2006; Poji¢ &
Mastilovi¢, 2013). Quality indicators of wheat include ana-
lytical parameters (e.g., protein content, falling number),
rheological parameters (e.g., mixing resistance, viscoelas-
ticity), and end product quality parameters (e.g., bread loaf
volume and texture) (Dowell et al., 2006; Mutlu et al., 2011;
Poji¢ & Mastilovi¢, 2013). Conventional assessment meth-
ods that use wet chemistry are laborious, time-consuming,
expensive, not environmentally friendly, and require expe-
rienced technicians (Manley, 2014; Shi et al., 2019). Given
the disadvantages of traditional assessment methods and
the heavy use of wheat as well as wheat products, there is
agreat demand for rapid, low-cost, nondestructive, simple,
and environmentally friendly assessment methods to eval-
uate the quality of wheat kernels, ground flours, dough,
and end products (Dowell et al., 2006; Salimi Khorshidi
et al., 2018).

To meet this demand, researchers have studied and
applied spectroscopic approaches such as nuclear mag-
netic resonance (NMR), fluorescence spectroscopy (FS),
X-ray computed tomography (CT), hyperspectral imaging
(HSI), ultraviolet spectroscopy, visible spectroscopy, and
mid-infrared spectroscopy (MIRS) (Ahmad et al., 2016;
Besancon et al., 2020; Botosoa et al., 2013; Caporaso et al.,
2018a; Ezeanaka et al., 2019; Fox, & Manley, 2014; Sadat
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combining standard product sensory attributes and spectra for model develop-
ment deserves further study.

artificial intelligence, chemometrics, machine learning, near-infrared spectroscopy, wheat

et al., 2019; Salimi Khorshidi et al., 2018; Sendin et al.,
2018). Compared to these methods, near-infrared spec-
troscopy (NIRS) is the most popular one given its advan-
tages in throughput, portability, versatility, simplicity, and
cost (Cen & He, 2007; Manley, 2014; Sadat et al., 2019).

NIRS was first studied in the early 1970s by Karl Nor-
ris and Phil Williams, who combined NIRS with chemo-
metrics methods to measure protein and moisture con-
tents (Manley, 2014; Norris & Williams, 1984; Williams
et al., 2019). Subsequently, studies and reviews of NIRS
applications significantly increased (Caporaso et al., 2018a;
Lasztity & Abonyi, 2009; Liang et al., 2022; Mutlu et al.,
2011; Poji¢ & Mastilovi¢, 2013). While there are many
studies combining NIRS with advanced chemometrics
for wheat quality assessment, to our knowledge, there is
no comprehensive and in-depth review for readers who
have expertise in physicochemical experiments but lack
knowledge in spectral data analysis, or for companies
to improve the applications of NIRS in wheat quality
assessment. To close this gap, this review presents the
principles, spectra acquisition, pretreatments, wavelength
selection, outlier treatments, dataset division, and model
development in NIRS methods. Especially, the applica-
tion of NIRS in quantitative assessments of compositional
parameters, physical parameters, rheological parameters,
and end product quality was also reviewed. Furthermore,
it discusses future development trends of the NIRS tech-
nology in the wheat quality assessment (Figure 1).

2 | NIRS METHODOLOGY

2.1 | Principle and spectra acquisition

NIRS works by using the near-infrared (NIR) radiation
absorption in the 750-2500 nm range (Manley, 2014).
Absorptions in the NIR region are generated from fun-
damental vibrations by overtones and combinations. The
NIR spectrum contains information about the X-H chem-
ical bonds (e.g., C-H, N-H, and O-H). The absorption
of these bonds indicates unique compositions of the ana-
lytes, and the widely abundant hydrogen in organic mate-
rials enables NIRS to quantitatively determine various
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ferent wheat flour samples and the approximate absorp-
tion wavelength ranges for different compounds (Badard
et al., 2019; Manley, 2014; Mutlu et al., 2011). Due to the

FIGURE 1 Application of near-infrared spectroscopy for wheat quality assessment
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FIGURE 2 Spectra of several wheat flour samples and the
approximate absorption wavelength ranges for different
compositions (Badaro et al., 2019; Manley, 2014; Mutlu et al., 2011)

organic materials (Agelet & Hurburgh, 2010; Manley,
2014). Figure 2 shows the typical spectral profiles of dif-

overtone and combination bands, it is difficult to directly
use the spectrum for quantitative assessments of wheat
and its end products (Manley, 2014). Modern chemomet-
rics methods had been developed to extract information
from the spectral data and establish calibration models
that allow the practical application of NIRS (Agelet & Hur-
burgh, 2010). The main procedures for establishing calibra-
tion models are shown in Figure 3. The spectral datum is a
mean spectrum of a sample’s measured positions (average
measurement), and there are several spectral data acqui-
sition modes (transmittance, reflectance, transflectance,
and interactance) (Manley, 2014; Poji¢ & Mastilovi¢, 2013).
While the reflectance mode is the most popular one among
wheat quality assessments, the suitable data acquisition
mode is highly dependent on sample types and practical
needs (Albanell et al., 2021; Armstrong, 2014; Owens et al.,
2009; Sato et al., 2001).
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2.2 | Chemometrics in NIRS analysis

221 | Spectral pretreatment

The objective of pretreatment is to reduce systematic noise
and increase or enhance the signals from the chemical
information associated with the samples to improve cali-
bration model building (Agelet & Hurburgh, 2010; Man-
ley, 2014; Poji¢ & Mastilovi¢, 2013; Rinnan et al., 2009).
An illustration of frequently used spectra pretreatment
methods is shown in Figure 4. Raw spectral data changed
when different methods are employed, and each pretreat-
ment method has its own advantage, so there is no general
rule for pretreatment selection. In practice, optimal pre-
treatment selections require trial and error guided by the
cross-validation/test set results and experience (Agelet &
Hurburgh, 2010; Cui & Fearn, 2018). The commonly used
pretreatment methods for biological materials and their
principles, functions, and characteristics are shown in
Table 1. It is worth mentioning that all of the pretreat-
ment methods may lead to information loss from the raw
spectrum, although they can improve the signal to noise
ratio (Bian et al., 2018; Dong & Sun, 2013; Shi & Yu, 2017;
Williams, 2020). In addition, multiple studies have shown
that with the adoption of optimal datasets and the applica-
tion of advanced algorithms, the effect of pretreatment on
the performance of the final model was no longer signifi-
cant (Shi & Yu, 2017; Dong & Sun, 2013; Bian et al., 2018;

Spectra data pretreatment

Spectral wavelength selection

The main procedures for establishing calibration models for wheat quality assessment using near-infrared spectroscopy

Williams, 2020; Zhang et al., 2019; Harrington, 2018; Mao
et al., 2014; Mutlu et al., 2011; Chen et al., 2017; Peiris et al.,
2017; Gabriel et al., 2017).

2.2.2 | Spectral wavelength selection

The objective of spectral wavelength selection, also known
as data dimension reduction, is to reduce redundant infor-
mation in the raw spectral data, since different chemi-
cal compositions usually have specific absorption bands.
The commonly used spectral wavelength selection meth-
ods for biological materials and their principles, advan-
tages, and disadvantages are shown in Table 2. Although
some researchers believe that it is better to choose the
full spectrum for the calibration model, theoretical and
experimental evidence showed that spectral wavelength
selection could also significantly improve the performance
of models with a lower computation consumption (Chen
et al., 2008; Seema et al., 2020; Tian et al., 2021; Williams,
2020). There are two technical routes to spectral wave-
length selection. The first is to select a specific range
of wavelengths to represent full wavelength range in the
raw spectral data. With this route, researchers had grad-
ually increased their reliance on data analysis for spec-
tral range selection and decreased their reliance on expe-
rience (Chen, Guo, et al., 2012; Yang et al., 2017). This
could be seen in the change from manual spectral range
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FIGURE 4 Frequently used pretreatment methods: (a) original absorption spectra, (b) normalization (NL), (c) standard normal variate
(SNV), (d) detrending correction (DT), (e) multiplicative scatter correction (MSC), (f) first derivative (FD), (g) second derivative (SD), and (h)
orthogonal signal correction (OSC). The original spectra were collected using 107 hard red winter wheat samples at the authors’ laboratory

selection to automatic optimal spectral range combination
search (e.g., interval partial least square [i-PLS]) (Chen
et al., 2017; Dong & Sun, 2013). The other route is to select
specific wavelengths instead of spectral ranges to repre-
sent raw data (e.g., variable combination population anal-

ysis [VCPA]). This second route could reduce more redun-
dant information than the first route, but there were only
a few applications of this method in wheat NIR spec-
tral wavelength selection (Luo et al., 2015; Yang et al.,
2017).
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2.2.3 | Outliers and dataset division

Outliers and dataset division need to be taken into consid-
eration before model development. Outliers exist both in
reference values and spectral data. To remove outliers in
reference values, test methods like the Dixon’s test, Tukey’s
rule, or Grubbs’ studentized mean deviation can be use-
ful tools (Dixon, 1950; Grubbs, 1950) . When it comes to
spectral data, there are two different approaches toward
outliers. One is that outliers in spectra should be detected
and removed since they may influence the performance
of calibration models (Jiang et al., 2007; Shi et al., 2019;
Tian et al., 2021; Viljoen et al., 2005). The most popu-
lar method adopted for spectral data outlier elimination
is principal component analysis (PCA), which relies on
either the F-residuals or Hotelling’s T?-values exceeding
the corresponding limit of 5% (Kucheryavskiy, 2013; Shi
et al., 2019; Tian et al., 2021). Alternative methods include
the Mahalanobis distance, Monte Carlo cross-validation,
Chauvenet’s test, and hierarchical clustering algorithms
in connection with PCA (Jiang et al., 2007; Ye et al.,
2018). Another approach is that outliers contain spec-
tral information of raw materials, and they are needed to
ensure a robust model, so they should not be removed.
In some studies, there were no significant improvements
in model performance with outlier removal (Williams,
2020; Ye et al., 2018). Overall, to a large extent, outlier
removal mainly depends on experience instead of a general
standard.

As for dataset division, collected data are commonly
divided into the calibration set (training set), the valida-
tion set, and the prediction set (test set). In the most com-
monly used cross-validation methods, there is no indepen-
dent validation set, only a calibration set and a prediction
set with the common ratio being approximately 3:1 (Jirsa
et al., 2008; Li et al., 2017; Shi et al., 2019; Teye et al., 2014;
Zeng et al., 2019). The principle of the dataset division is
that the distribution of the measured parameter variations
in each dataset is even, which means that the standard
deviation values and ranges in both datasets are similar
(Jiang et al., 2020; Jirsa et al., 2008; Shi et al., 2019; Zeng
et al., 2019).

2.2.4 | Calibration model development and
performance evaluation

The methods for calibration model development can be
divided into two categories: linear regression methods and
nonlinear regression methods. The principle, advantages,
and disadvantages of commonly used regression methods
are described in Table 3. While linear regression meth-

ods, especially partial least squares regression (PLSR), are
popular, they have many practical drawbacks and require
specific conditions such as linearity between sample spec-
tra and reference values, which limit their application
(Agelet & Hurburgh, 2010; Chen, Ding, et al., 2012; Man-
ley, 2014). Indeed, the nonlinearity between sample spec-
tra and reference values seemed unavoidable because of
the violations of the Beer-Lambert law due to sample
homogeneity, stray light, errors in the reference meth-
ods, and the nonlinearity between the NIR spectra and
the property of interest (Centner et al., 1998; Chen, Ding,
et al.,, 2012; Poji¢ & Mastilovi¢, 2013). Therefore, it is
important to evaluate how strong nonlinearity is before
using linear regression methods. Useful tools for non-
linearity detection include Run Tests and the Durvin-
Watson statistic approach of augmented partial resid-
ual plot (Centner et al., 1998; Mark & Workman, 2005;
Zareef et al.,, 2020). When nonlinearity is not notice-
able, linear calibration models are reliable. When nonlin-
earity is significant, several measures, including deleting
wavelengths, adding extra principal components/latent
variables, and splitting data, should be considered before
proceeding with the linear calibration models (Mark &
Workman, 2005). These measures were tested in some
studies and improved performance. For example, the intro-
duction of the modified restricted Boltzmann machine
(MRBM) and VCPA for wavelength selection gained the
best results in PLSR models (Jiang et al., 2020; Harrington,
2018).

The application of nonlinear algorithms coupled with
NIRS is superior both in accuracy and robustness for non-
linear data (Zareefetal., 2020; Bian et al., 2018; Zhang et al.,
2019). This approach usually requires two preconditions.
The first one is a large number of samples collected from
diverse sources (Williams, 2020; Cui & Fearn, 2018; Bian
et al., 2018; Zhang et al., 2019; Dowell et al., 2006). This can
be seen in the study of Zhang et al. (2019), which contained
775 wheat samples from 1998 to 2005. Second, some nonlin-
ear regression methods might need to be modified to fit the
wheat NIR spectra. For example, an improved deep belief
network (DBN) model, a modified convolutional neural
network (CNN) model, and a modified radial basic func-
tion neural network (RBFNN) model have shown feasibil-
ity and potential in model performance improvements ( Li
et al., 2017; Zhang et al., 2019; Mao et al., 2014). After cali-
bration model establishment, models are optimized by the
validation dataset to find the optimal model, which will
then be tested by the prediction dataset to evaluate robust-
ness. The most frequently used validation method is cross-
validation, particularly leave-one-out cross-validation, in
which only one spectrum and its associated reference val-
ues in the calibration set are left as the validation set and
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the rest are used for calibration set, and that is then done
repeatedly until all spectra have been left out once and used
for validation (Che et al., 2017; Chen, Guo, et al., 2012).

The evaluation parameters of model performance
include the following: coefficient of determination for cal-
ibration (Ré); correlation coefficient for prediction (rc);
root mean square error of calibration (RMSEC); standard
error of calibration (SEC); coefficient of determination
for cross-validation (Rév); correlation coefficient for pre-
diction (rcy); root mean square error of cross-validation
(RMSECV); standard error of cross-validation (SECV);
coefficient of determination for prediction (Rlz,); correla-
tion coefficient for prediction (rp); root mean square error
of prediction (RMSEP); standard error of prediction (SEP);
ratio of prediction to deviation (RPD); and the range error
ratio (RER) (Shi et al., 2019; Gabriel et al., 2017).

3 | APPLICATION OF NIRS IN WHEAT
QUALITY EVALUATION

3.1 | Types of wheat product samples
suitable for NIRS

The methodologies of NIRS application, including spec-
tra acquisition, pretreatment, wavelength selection, and
model development, are generally the same for kernels,
whole meals, and flours. Specific methods are universal to
some extent, but the optimal model is usually obtained by
trial and error to combine these methods.

The goal of NIRS assessment is different for kernels and
for flour (Poji¢ & Mastilovi¢, 2013). Kernel assessment,
especially for single kernels, is more likely to be used for
breeding purposes and is primarily concerned with pro-
tein content and its related parameters such as gluten con-
tent and gluten index (Armstrong, 2014; Baslar & Ertu-
gay, 2011; Bian et al., 2018; Chen et al., 2021; Harrington,
2018; Jirsa et al., 2008; Mao et al., 2014; Shi & Yu, 2017;
Sinelli et al., 2011). For flour, assessments usually focus on
processing, storage, dough making, and end product qual-
ity properties. Therefore, the related parameters usually
include starch content, ash content, protein content, lipid
content, moisture, rheological properties, bioactive com-
pounds, and baking performance (Dong & Sun, 2013; Fer-
reira et al., 2015; Finney et al., 1988; Garnsworthy et al.,
2000;Li et al., 2017; Liu et al., 2015; Miralbés, 2004; Morgan
& Williams, 1995; Mutlu et al., 2011; Owens et al., 2009; Shi
et al., 2019). Recently, researchers explored spectra from
single kernel or bulk samples, and some advances were
also made in parameter prediction that was previously
studied for early screening (Arazuri et al., 2012; Gabriel
etal., 2017; Mishra et al., 2018; Mutlu et al., 2011; Peiris et al.,
2017; Shi & Yu, 2017; Sinelli et al., 2011).

in Food Science and Food Safety

Bran, the major by-product in the milling industry, was
first studied by NIRS for its fiber content in 1984 (Hor-
vath et al., 1984). Recently, as bran’s nutritional values were
further recognized, studies of wheat bran have extended
to other compositions such as protein content, moisture,
starch, and lipids (Hell et al., 2016; Sujka et al., 2017). In
addition, dough, bread, cake, and pasta are also consid-
ered samples of spectral acquisition, though NIRS appli-
cation in them is not as popular as that in kernels and
flour. In these products, studies mainly focused on phys-
ical attributes (e.g., loaf volume, moisture, and hardness)
and nutritional parameters.

3.2 | Quantitative determination of
analytical quality parameters

Analytical quality attributes can be divided into two cat-
egories. The first category is the contents of various com-
ponents, such as protein, moisture, starch, lipid, and fiber.
Each of these compositions has specific chemical struc-
tures and therefore specific classical absorptions in NIR
spectra. The approximate wavelength absorption ranges of
different components used in NIRS assessment are shown
in Figure 2. The absorption wavelengths of the specific
chemical structures can be used to interpret the perfor-
mance of linear regression models (e.g., the PLSR model),
but this will not work for nonlinear regression models
(Chen et al., 2008; Liang et al., 2022; Du et al., ). The sec-
ond category is physical parameters other than compo-
sition. These include physical parameters of wheat (e.g.,
hardness and test weight) or physical parameters correlat-
ing to compositions (e.g., water absorption, gluten index)
(Baglar & Ertugay, 2011). An overview of NIRS applica-
tions in the quantitative determination of compositions
and other physical parameters of wheat kernel and flour
in the past 10 years is summarized in Table 4.

3.21 | Composition determination
Protein
Protein content is the most important quality indicator of
wheat and flour and has attracted the most research atten-
tion (Table 4). Protein content influences the quality of end
products, especially baked products (Ahmad et al., 2016).
Its determination using NIRS is a proven technique accord-
ing to model performances shown in Table 4, and the NIRS
has been a standard method since 1985 (Cereals & Grains
Association, 1999a, 1999b).

PLSR as a traditional linear regression method still
accounted for a large proportion of model development
for protein content determination (Shi & Yu, 2017; Mishra
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et al., 2018; Shi et al., 2019; Williams, 2020; Mishra et al.,
2018; Hell et al., 2016; Ye et al., 2018). These calibration
models have achieved stable and satisfactory determina-
tion, and the Rf, was generally above .9 except for the deter-
mination of wheat bran (Shi & Yu, 2017; Mishra et al.,
2018; Armstrong, 2014; Shi et al., 2019; Chen et al., 2017;
Williams, 2020; Hell et al., 2016). Overall, the performance
of the PLSR model was mainly influenced by sample size
and sample quality (e.g., the variance and uniformity)
(Chen et al., 2017). Various wavelength selection methods
have been employed and optimized the performance of
the PLSR model. Representative selection methods, such
as regression coefficient analysis (RCA), successive pro-
jections algorithm (SPA), improved simulated annealing
(ISA), and MRBM, had powerful effects on PLSR models,
making their performance comparable to those of nonlin-
ear regression methods (Harrington, 2018; Shi & Yu, 2017).
Two practical studies that promoted NIRS technology are
worth mentioning. The first study designed an automatic
NIR spectral collection instrument of single wheat kernels
and a built-in grain quality evaluation system based on
a PLSR model for use in breeding programs (Armstrong,
2014). This instrument has the potential to be combined
with advanced PLSR models or other regression models
to create an automatic and reliable instrument for breed-
ing in the grain industry. The second study was conducted
recently by Chen et al. (2021), in which three handheld
NIRS devices were used to predict protein content, and two
of their PLSR models gained satisfactory results (Rlz, >.94)
(Chen et al., 2021). This study illustrated the feasibility of
using handheld NIRS devices to determine protein content
and other parameters.

Besides wavelength selection methods, nonlinear
regression methods were also introduced into model
development to further improve model performance. As
shown in Table 4, the performance of nonlinear regression
methods exceeded the average performance of linear
regression methods (Williams, 2020; Chen et al., 2017).
In the early 2010s, nonlinear regression methods had
shown its superiority and achieved better performance
than linear regression methods with the same sample
size (below 100) (Mutlu et al., 2011; Mao et al., 2014).
Sample size in subsequent studies was increased as much
as 10-fold, resulting in models’ increasing robustness (Li
et al., 2017; Cui & Fearn, 2018; Bian et al., 2018; Williams,
2020). In order to reach the largest range of protein
content and therefore strengthen the generalizability of
regression models, the source of the samples also should
be diversified (Li et al., 2017; Cui & Fearn, 2018; Bian et al.,
2018; Williams, 2020; Zhang et al., 2019). For example,
according to studies by Bian et al. (2018) and Zhang et al.
(2019), there was a total of 882 samples from five varieties
collected in 1998-2005. Both studies made modifications

i Food Science and Food Safety

on the original neural network with random weights
(NNRW) and convolutional neural network (CNN), which
also contributed to the performance improvement (Bian
et al., 2018; Zhang et al., 2019). These modifications were
more likely to be seen in regression methods based on
neural networks such as improved RBFNN and improved
DBN ( Li et al., 2017; Mao et al., 2014). In addition, support
vector machine regression (SVMR) and random forest
regression (RFR) were also reliable methods to gain satis-
factory results according to the studies of Williams (2020)
and Chen et al. (2017). Recently, combining NIR spectra
with spatial images, obtained using an emerging imaging
technique named hyperspectral imaging (HSI), became
popular. The method was able to provide the spectral
information in each pixel and therefore can predict the
distribution of protein content in the sample instead of the
average values of the spectral acquisition areas (Caporaso
et al., 2018a, 2018b; Manley, 2014).

Moisture

Moisture analysis has also attracted considerable research
interest (Table 4). PLSR as the mainstream application had
been adopted to develop models for determination of mois-
ture content in kernels, flour, and bran (Armstrong, 2014;
Hell et al., 2016; Mishra et al., 2018; Peiris et al., 2017;
Shi & Yu, 2017). PLSR model development is also rela-
tively mature, which can be seen in the studies of flour
and kernels conducted by Dong and Sun (2013), Armstrong
(2014), Shi and Yu (2017), Peiris et al. (2017), and Mishra
et al. (2018). These studies all gained satisfactory perfor-
mance. Although small sample sizes were used in studies
of Dong and Sun (2013) and Shi and Yu (2017), satisfac-
tory models were obtained by using wavelength selection
methods Pearson product-moment correlation coefficient
(PCC), i-PLS, and RCA. In contrast, studies of Peiris et al.
(2017) and Armstrong (2014) with large sample sizes (396
samples and 300 samples) gained better results for flour
(Rp = .98) and kernels (R} = .978), respectively. Excellent
performance was also achieved by using the models based
on PLSR and the canonical correlation analysis (CCA)
(Gatius et al., 2017). PLSR performance in handheld NIRS
devices still needs to be improved in terms of the spectral
range and modeling methods (Chen et al., 2021). As non-
linear regression methods, artificial neural network (ANN)
and improved DBN were used by Mutlu et al. (2011) and
Li et al. (2017), respectively, to develop models for wheat
flour, and both models achieved better accuracy and sta-
bility than PLSR.

Starch

Although starch accounts for the highest content in
wheat, studies of starch are significantly less than those of
protein and moisture. Owens et al. (2009) conducted a



Comprehensive

285 | REVIEWS

WHEAT QUALITY ASSESSMENT USING NIRS

in Food Science and Food Safety

comprehensive study using undried and dried (24 h at
100°C) wheat kernels and undried milled wheat from a
wide range of varieties grown in various environments and
years, but the performance was not ideal. The only calibra-
tion model with acceptable performance was the one built
for wheat bran starch content determination with RlzD of .88
(Hell et al., 2016). Recently, there were also attempts using
new chemometrics methods for starch content determina-
tion in other cereals (e.g., corn), and the progress in model
performance was remarkable (Jiang & Lu, 2018). The cor-
relation coefficient method plus PLSR was used to select
optimal wavelengths, and the calibration model was based
on RBNFF, which presented the smallest RMSEP (0.0497)
and the highest R} (.9968) (Jiang & Lu, 2018).

Amylose

As for amylose content, the performance of PLSR model
was inferior to the performance in wheat kernels, flour,
and wheat bran (Owens et al., 2009; Hell et al., 2016).
A novel research approach was to determine the mixture
level of waxy wheat (amylose content <0.2%) and conven-
tional wheat (typical amylose content around 20%). The
first quantification of this mixture was conducted by Del-
wiche and Graybosch (2014). Nine pairs of waxy and con-
ventional wheat varieties were used to form 29 different
proportion (conventional/waxy) percentages (0%-100%),
and the optimal PLSR model produced an Rlz, in excess
of .98, regardless of sample formats or spectral pretreat-
ments (Delwiche & Graybosch, 2014). Delwiche and Gray-
bosch furthered their study in 2016. The flour samples
were from two separate seasons in consecutive years and
were provided by breeders to conduct the same experiment
(Delwiche & Graybosch, 2016). Three modeling methods—
PLSR, one- and two-term linear regression, and SVMR—
were used to model the spectral data and reference values;
however, there was no distinct difference in model per-
formance. What is worth mentioning is that the 2290 nm
wavelength with the second derivative treatment showed
great potential in amylose content determination, even lin-
ear regression also achieved SEP below 10% (Delwiche &
Graybosch, 2016).

Lipid

NIRS had been widely used in determination of lipid con-
tent for oilseed crops such as peanuts, soybean, sesame,
and rapeseeds, but such studies in wheat were very limited
(Li et al., 2020). The regression method most commonly
adopted in lipid determination of oilseeds was PLSR, and
the prediction results were excellent with some R?-values
above .95 (Li et al., 2020). For wheat kernels and wheat
flour, the content of free lipids and polar lipids was mod-
eled by Dowell’s group (2006). For flour, the highest Rf) was
.74, while the results for wheat kernels were inferior and

not adequate for rough screening, which required an RIZ,
value above .7 (Dowell et al., 2006). Hell et al. (2016) used
PLSR-based models with simple pretreatments to study
wheat bran, and the performance in NIR spectra and mid-
infrared (MIR) spectra significantly improved. In particu-
lar, the performance of lipid determination in the model
for MIR spectra was improved (Hell et al., 2016). Simi-
lar to Hell et al (2016), Sujka et al. (2017) applied MIRS
to build a model for crude fat and fatty acids includ-
ing palmitic acid, stearic acid, arachidic acid, oleic acid,
linoleic acid, and linoleic acid in flour, and only the model
for crude fat had performance comparable to that reported
by Hell et al. (2016). It is worth noting that the deter-
mination of arachidic acids had the highest accuracy,
although its content was the lowest among these fatty acids
in wheat flour (Sujka et al., 2017). Recently, researchers
also experimented with wavelength selection methods and
nonlinear methods for the assessment of free fatty acid
value during storage of wheat flour. Variable combination
population analysis (VCPA) was first introduced as a wave-
length selection method for spectral processing of wheat
flour, and the model based on extreme learning machine
(ELM) only needed five variables selected by VCPA to
achieve an Rf, above .95, which exhibited great potential in
practical application for shelf-life evaluation (Jiang et al.,
2020).

Fiber

Similar to starch, fiber content is relatively high in wheat,
but its studies are relatively few. Models for fiber con-
tent in different commercial flour had been studied since
1990s (Kays et al., 1996; Horvath et al., 1984). In 2002,
Kays and Barton (2002) adopted modified PLSR models
to predict the contents of insoluble dietary fiber and sol-
uble fiber, and the Rlz, for insoluble fiber content predic-
tion reached .98. Due to errors and deviations of the ref-
erence method, model performance for the soluble fiber
content prediction was inferior (Kays & Barton, 2002).
Subsequently, researchers paid more attention to using
PLSR plus different wavelength selection methods includ-
ing the variable importance for projection (VIP), compet-
itive adaptive reweighted sampling (CARS), genetic algo-
rithms (GA), and random frog (RF) (Ferreira et al., 2015;
Liu et al., 2015). Similar to Kays and Barton’s results, the
prediction of soluble dietary fiber content in wheat was not
ideal, while the result for insoluble dietary fiber was con-
siderably better (Hell et al., 2016). In addition, the perfor-
mance of NIRS was better than that of MIRS (Hell et al.,
2016). Recently, HSI was also used to determine fiber con-
tent from wheat (Badaré et al., 2019). The RIZ, and RMSEP
were .98 and 0.52, respectively, with the adoption of eight
selected wavelengths and PLSR (Badar6 et al., 2019).
Furthermore, with PLSR and spatial images from HSI, the
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added fiber in semolina flour was visualized and formed
a distribution map, and a reasonably accurate prediction
map can be obtained in the range of 3%-75% (Badaro et al.,
2019).

Polyphenols

Polyphenols are considered healthy components in whole
grain products and are therefore receiving increasing
attention. Overall, calibration model development for
polyphenols is still at the initial stage, similar to the sit-
uation in fiber content determination, with the focus on
the linear model PLSR. In addition, data accumulation
for polyphenol compositions was not enough for CNN
and other neutral networks, which also limited the use
of advanced nonlinear chemometrics (Cui & Fearn, 2018;
Williams, 2020; Li et al., 2017). The first study of total
polyphenol content determination in grains using NIRS
was conducted in 2001 (Sato et al., 2001). In the study of
Tian et al. (2021), the effects of different spectral ranges
(full spectra or specific ranges from 1333 to 2222 nm) and
different pretreatments on PLSR model performance were
compared. The PLSR model pretreated by multiplicative
scatter correction (MSC) plus first derivative (FD) had the
best performance with an Rlz) of .88, and this was also,
to this day, the best performance of NIRS in polyphenol
content prediction (Tian et al., 2021). Improved accuracy
for polyphenol content prediction was achieved in stud-
ies of oats and green tea, with additional spectral pretreat-
ment and selection methods. With the adoption of two-
dimensional correlation spectroscopy (2DCOS) and Si-PLS
for wavelength selection, performance was significantly
improved (Chen et al., 2008; Zeng et al., 2019). This illus-
trates the importance of introducing new chemometrics
methods for low concentration components because their
signals are weak and more likely to be obscured by those
of higher concentration (Li et al., 2020). NIRS applications
in other bioactive compounds, including 5-glucans, arabi-
noxylans, bound phenols, free phenols, and anthocyanins,
are still rare (Albanell et al., 2021).

Ash

Ash content is an important flour milling quality indica-
tor. The application of NIRS for ash determination has
improved remarkably in recent years, and NIRS has been
also a standard method for ash determination since 2000
(Cereals & Grains Association, 2020). Although ash does
not have NIR energy absorption, most minerals are con-
tained in the organic materials, which makes it possible
to determine the ash content (Garnsworthy et al., 2000).
Dowell et al. (2006) used four NIR spectrometers to acquire
spectra and calibrated the model for wheat grain ash con-
tent and flour ash content, respectively, based on PLSR
plus mean centering and FD. The Rlz, of the two calibra-
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tion models was below .45 and .32, respectively, which was
insufficient for quantitative determination (Dowell et al.,
2006). Another study conducted by Viljoen et al. (2005)
had better performance by using a larger and processed
dataset with 20 cultivars from 3 years as well as outliers
removal (Viljoen et al., 2005). The comparison between the
two studies showed that larger and processed datasets have
a positive effect on model development. Subsequently, i-
PLS was introduced into ash content determination (Dong
& Sun, 2013). Although Dong and Sun’s (2013) sample size
was half of that in Viljoen et al. (2005), the performance
of the PLSR model was the best and was the same as that
acquired in Hell et al. (2016). The ash content in wheat bran
was first studied in 2016, and the study compared the per-
formance of MIRS and NIRS (Hell et al., 2016). It showed
that the performance of MIRS was inferior to that of NIRS
(Hell etal., 2016). Recently, a PLSR model for flour ash con-
tent determination was developed using MIRS, and the Rf,
of the model reached .94, indicating its feasibility in deter-
mining flour ash content (Sujka et al., 2017).

Compared to linear regression methods, nonlinear
regression methods achieved better performance in ash
content determination. Back propagation neural network
(BPNN), DBN, improved DBN, and CNN were evaluated
by Li et al. (2017) and Cui and Fearn (2018). The model with
the best performance in the study of Li et al. (2017) was
developed by using wavelet transformation as a pretreat-
ment method and then an improved DBN method instead
of the original DBN method. Compared with these models,
the performance achieved in the study of Chen et al. (2021)
with handheld NIR devices was less satisfactory, but fur-
ther exploration of nonlinear regression methods in hand-
held NIR devices will be worthwhile.

3.2.2 | Determination of physical parameters
Hardness

The hardness of wheat kernel samples is usually measured
by the Single Kernel Characterization System (SKCS).
NIRS can be used to measure hardness because the scat-
ter characteristics of a sample shown in spectra are influ-
enced by the particle size distribution of the powdered
sample, which is in turn connected with wheat kernel tex-
ture or hardness (Norris et al., 1989). NIRS is recognized as
a standard method for wheat kernel hardness determina-
tion (Cereals & Grains Association, 1999c). The high corre-
lation between hardness and damaged starch in flour ver-
ified this conclusion (Finney et al., 1988). The first study
to measure wheat kernel hardness using NIRS was con-
ducted by Manley et al. in 2002, and the correlation of
coefficient between the predicted results using PLSR and
the reference values (particle size index [PSI] test) was
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only .42 (Manley et al., 2002). Similar performance, regard-
less of wheat varieties, sample formats, and NIR instru-
ments, was seen in the study of Dowell et al. (2006). Sub-
sequent studies adopted pretreatment methods for PLSR
model development and larger datasets, and model perfor-
mance was improved (Owens et al., 2009; Mishra et al.,
2018). A comprehensive study conducted by Williams
(2020) compared nine prediction models built by partici-
pants with professional modeling backgrounds based on
samples from 8 years. The nonlinear regression method,
RFR, gave the best result (Rf) = .826) without any pretreat-
ment, outlier removal, or wavelength selection. The cali-
bration model was built on seven seasons’ data and vali-
dated with one additional season. It exhibited great robust-
ness, although the Rlz3 value was below that in the study of
Mishra et al. (2018).

Newer chemometrics methods were used in the spectral
dataset collected by HSI. Both Mahesh et al. (2014) and Erk-
inbaev et al. (2019) selected wheat varieties from Canada
and used the same hardness test methods. The nonlin-
ear regression method, ANN, was superior to PLSR in the
study of Erkinbaev et al., and PLSR showed better perfor-
mance than PCR in the study of Mahesh et al. (Mahesh
etal., 2014; Erkinbaev et al., 2019). Ant colony optimization
(ACO) algorithm combining SVMR gained the best perfor-
mance in hardness prediction (Zhang et al., 2017). Overall,
the accuracy of determination was mostly improved by the
introduction of chemometrics rather than HSI, and HSI
spectra relied more on advanced chemometrics methods
than conventional NIR spectrometers to gain similar per-
formance (Zhang et al., 2017; Mahesh et al., 2014).

Test weight and 1000 kernel weight

Test weight and 1000 kernel weight are both indicators of
wheat quality. In the comprehensive study of Dowell et al.
(2006), spectra from whole wheat kernels and flour of two
wheat cultivars were used for PLSR model development to
predict test weight (Dowell et al., 2006). The study showed
that performance for the whole kernel was superior to that
for flour, and the NIR spectrometer with a wider wave-
length range was beneficial (Dowell et al., 2006). In the
most recent study conducted by Williams (2020), the best
RfD was .756, which was achieved by a model based on RFR,
and the experimental samples were collected from 7 years.
In addition, the nonlinear regression model showed supe-
riority in hardness prediction compared to the PLSR model
(R} = .414) (Williams, 2020).

Amstrong (2014) designed an automatic NIR instru-
ment for single-seed measurement of wheat kernels, and
the developed PLSR model achieved a high R}% (.86). The
study concluded that there was no correlation between
protein content and kernel mass (Armstrong, 2014). The
single-seed measurement instrument can evaluate the sin-

gle seed at arate of 4 seeds/s at least and achieved sufficient
detection for breeding purposes (Armstrong, 2014). As for
the 1000 kernel weight, Mishra et al. (2018) attempted
to build a model to determine the relationship between
NIR spectra and 1000 kernel weight measured by an auto-
matic seed-counter machine (Mishra et al., 2018). From
2000 to 2018,Rf, improved from .66 to .907, which showed
the potential to integrate 1000 kernel weight measure-
ment into the NIRS assessment system (Garnsworthy et al.,
2000; Mishra et al., 2018).

Germination/falling number

The falling number (the Hagberg number) represents the
a-amylase activity in kernels, which increases sharply after
germination and influences dough and end product quality
(Caporaso et al., 2018b; Barbedo et al., 2018). Using NIRS
to determine the falling number started in 2001, and it
was subsequently studied in 2006. The performances of the
models were all unacceptable regardless of the sample for-
mat and NIR equipment used (Hruskova et al., 2001; Dow-
ell etal., 2006). The next effort was made in 2018. Delwiche
et al. (2018) collected soft wheat samples in two formats:
kernels and ground meals. Based on the PLSR models, the
kernel format had better performance (Ré = .708), which
was still poor in accuracy. When the two formats were com-
bined into a larger dataset, the model performance became
worse (Delwiche et al., 2018). The only acceptable result
was achieved by Sujka et al. (2017) using MIRS, where the
RIZD was .95 as predicted by the PLSR model based on spe-
cific spectral ranges. In addition, the dataset in this study
consisted of four different grains—wheat, rye, spelt, and
triticale (Sujka et al., 2017). The performance of HSI-based
models in falling number was not satisfactory either. With
the adoption of various pretreatment methods, the Rf,s
were below .5 in the study of Caporaso et al. (2017).

Gluten content and gluten index

Fewer studies have been performed on gluten content than
protein content, and these studies can be divided into
wet gluten determination and dry gluten determination.
According to the studies of Baglar and Ertugay (2011) and
Sinelli et al. (2011), models for dry gluten achieved better
prediction performance ( Baslar & Ertugay, 2011; Sinelli
et al., 2011). The study of Gatius et al. (2017) was the only
one using a new linear regression method (CCA) to pre-
dictdry gluten, and the model had better performance than
PLSR.

The improvement brought by Si-PLS and SVMR on
wet gluten content prediction models was shown in the
study of Chen et al. (2017). The Rf) of the model based on
SVMR plus Si-PLS was .85, while the single PLSR model
Rf) was .675 (Chen et al., 2017). In a most recent study,
Chen et al. (2021) achieved similar performance using the
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PLSR model for wet gluten prediction without the help
of wavelength selection methods, but the sample size was
double that of the previous study (Chen et al., 2021). The
spectra in the study were collected from handheld NIRS
devices, which would aid practical application (Chen et al.,
2021).

Gluten index is an indicator of gluten quality. In the
study of Dowell et al. (2006) of gluten index, the values of
Rf, were below .5 for both wheat kernels and wheat flour.
Five years later, a double size dataset was used in the study
of Sinelli et al. (2011), and the new model had better perfor-
mance (rp = .82) with extended MSC and FD (Sinelli et al.,
2011).

Zeleny sedimentation value

Zeleny sedimentation value refers to the sedimentation
volume of flour suspended in lactic acid solution, which
is associated with the quality and quantity of gluten in
flour (Cauvain & Young, 2009). Remarkable advances have
been made in Zeleny sedimentation value prediction, with
correlation coefficients increasing from .11-.50 in 2001 to
.924 in 2011 (Hruskova et al., 2001; Hruskova & Famera,
2003; Dowell et al., 2006; Jirsa et al., 2008; Baslar & Ertu-
gay, 2011). The initial studies were based on PLSR for
model development, and performance improvement to a
large extent depended on increasing the quality and size
of datasets. In 2011, the introduction of ANNs broke the
bottleneck and achieved the most satisfactory performance
without using any pretreatment method (Mutlu et al,,
2011). Chen et al. (2021) compared the performances of
three handheld NIRS spectrometers on Zeleny sedimenta-
tion value. With a larger dataset, pretreatment, and outlier
removal, the performance of the best model in the study
was similar to that in the study of Mutlu et al. (2011).

Damaged starch

Native starch exists as discrete granules in kernels or flour.
The granules may be damaged during milling, thereby
forming damaged starch that will increase water absorp-
tion and thus have an effect on dough rheology and end
use product quality. The first determination of starch dam-
age content was conducted in 1981, and the performance
was acceptable (Rlz, =.90; SEP = 4.2); the calibration model
was subsequently optimized (Dowell et al., 2006; Poji¢ &
Mastilovi¢, 2013). The application of discrete wavelengths
and full wavelength range for model development were
respectively studied by Finney et al. in 1988 and Morgan
and Williams in 1995, and both approaches improved per-
formance (Finney et al., 1988; Morgan & Williams, 1995). A
breakthrough in spectral data acquisition mode and sam-
ple type was made by Miralbés in 2004. The spectra were
collected using the NIR transmittance mode, and the sam-
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ple was commercial wheat flour (a mix of different culti-
vars). A modified PLSR model with standard normal vari-
ate (SNV), detrending, and the FD achieved record high
performance (R123 =.94; SEP = 1.63) (Miralbés, 2004).

3.3 | Quantitative determination of
rheological parameters

Rheological parameters are concerned with the properties
of dough made from wheat flour. Rheological parameters
can be studied using many methods, and NIRS application
mainly focuses on four aspects: farinograph characteris-
tics, mixograph characteristics, extensograph characteris-
tics, and alveograph characteristics (Table 5).

Farinograph characteristics refer to dough’s resistance
against the mixing action of two paddles (blades). Rel-
evant measurements include farinograph water absorp-
tion (FWA), farinograph dough development time (FDDT),
farinograph dough stability (FDS), and farinograph mixing
tolerance index (FMTI) (Cauvain & Young, 2009). Mixo-
graph characteristics are also an indicator of dough resi-
tance but against more intensive mixing action of pins. Rel-
evant measurements include mixograph water absoprtion
(MWA), mixograph development time (MDT), and mixo-
graph tolerance (MT) (Cauvain & Young, 2009). Exten-
sograph characteristics refer to the stretch behaviors of
dough, and relevant measurements include resistance to
extension (R) and extensibility (E) (Cauvain & Young,
2009). The alveograph measures the gas retention capacity
when air is injected into dough to form bubbles. Relevant
measurements include dough to deformation/tenacity (P),
deformation energy (W), and configuration ratio (P/L)
(Cauvain & Young, 2009).

NIRS was first applied to determine rheological param-
eters, including water absorption and mixing time, in the
study of Rubenthaler and Pomeranz (1987). Subsequent
studies extended the diversity of models and NIR spec-
trometers and introduced more and newer chemometrics
methods (Hruskova et al., 2001; Miralbés, 2003, 2004; Dow-
ell et al., 2006; Jirsa et al., 2008; Mutlu et al., 2011; Sinelli
et al., 2011; Arazuri et al., 2012; Gatius et al., 2017; Mutlu
et al., 2011; Williams, 2020). Overall, the performance of
NIRS models to assess rheological parameters was not
ideal. A comprehensive summary of rheological parameter
studies from the past 10 years is shown in Table 5. The chal-
lenge in rheological parameter prediction is how to achieve
generalizability of the prediction model, which is influ-
enced by sample formats and composition proportions, the
quality of the dataset for calibration model development,
and system errors in reference values and chemometrics
methods.



WHEAT QUALITY ASSESSMENT USING NIRS

i Foud Science and Food Safety

Comprehensive

2% | REVIEWS

(senunuo))

020t
‘SWEIIA

020t
‘SweImM

020C
‘SWEIIM

0202
‘SWeImM

020C
‘SWEIIM

020z
‘SwelIm

SAURIJY

T =add
‘ZCT = dds
861" = T ¥S1d OSIN + VOS
LT1=add
‘20’1 = dds
s =0y AINAS auoN
68T = add
¥6'0 = ddS
‘186 = Iy e auON
e = add
1= dds OSIN +
Y16 = 39 AST1d ad + vos
6£'€ = Add
‘IP'T = ddS
016" = 5y MINAS auON
€8 = aAdd
66'0 = ddS
‘Y16 =3y RER QUON
9OUBULIOJId [PPOIN ssaooxdaxd
SoLIowowaYy )

S00C 01 8661
woIj SuoI3ax

JUSISJIP USAIS

Ul pajoar[od
SOIIOLIBA AL

S00C 01 8661
woIj suoi3ax

JUSISIP USAIS

Ul pajodr[od
SOT)OLIBA JAL]

S002 03 8661
WwoIj SuoI3ax

JUSIPIP USASS

Ul Pajod[[0d
SOT)ALIeA AT

S002 01 8661
woIj suor3ax

JUDIPIP USAIS

Ul pajod[[od
SOT)ALIA AT

S00Z 03 8661
woIj SuoI3ax

JUDIPIP USAIS

Ul pajod[[0d
SOT)ALIBA AT

S00C 01 8661
woIj suoI3ax

JUDIJJIP USAIS

ur pajod[[od
SOT)ALIBA AT
UOT)RULIOJUT
ordures
[euonippy

s19jourered (215070 J8aYM JO UOT)RUTULISAP dAlEIUEND Ut uonjesridde YIN JO MIIAIIAC UY

(LOT/SSL) 798

(LOT/SSL) 798

(Lo1/SSL) 798

(LOT/SSL) 798

(Lot/SSL) 798

(LOT/SSL) 798

(uonoipaxd/uon

-eIqI[ed)
9z1s srdwres

[ouIay

[ouIay

[ouIy

[ouIay

[ouIy

[ouIay

ordures

Jo adAg,

00LT-02L

33uer [ng

33uer [ng

00L1-02L

adue1 [ng

adue1 [[ng

wu ‘98uex
[enoads

JojouIoI)

-0ads 0059

wRISAS
JIN SSO4

I9)oW0I)

-0ads 0059

wRISAS
YIN SSOA

19)oWO0I)

-0adS 0059

wIRISAS
JIN SSOA

I9)oWon)

-02ds 0059

w2ISAS
YIN SSOA

19)oWO0I)

-02ds 0059

wRISAS
JIN SSO4

Iajowron

-02ds 0059
waISAS

YIN SSO4
JUSdWINIISUL
AIN

QJUBIOJ[JoY

QIUBIIJ[JoY

QJUBIOJ[JoY

0UBIID[JY

0UBIIS[JOY

0UR)IJY
apowr
uonismboy

Laa

Lada

Laa

vmd

VMA

vmd
uonyedrddy

S HT14dV.L



REVIEWS _| >

inFood Science and Food Safety

Comprehensive

WHEAT QUALITY ASSESSMENT USING NIRS

(senunuo))

L10T
“Te19
snnen

L10T
“Te 1o
snneo

(41014
“Te19
unzery

0202
‘SWEIIA

020z
‘SWeIImM

020C
‘SWEIIm

020z
‘SWeIm

S90UJIYY

6’y = ADISINY

T6's = JASINY A8} auON

97's = ADASINY
‘€9 = JASINY US1d SUON

68'S = ADHAS

a8 ="y

50'8 = ddS
99" =3y ¥S1d ¥0 + ad

8T’ = ddd

‘€91 = ddS
‘068" = &y ¥AST1d VoS

€7 = ady

€61 = JdS
‘€96 =Ty NNVdg QUON

96'T = Add

‘T'ST = ddS
068 = Ty MINAS auUON

e = add

‘9’6 = ddS
76 =3y MY auON
OURULIOJIdJ [PPOIN ssaooxdaxd
SoLIowoway )

Auedwood 1nogy
[eI0ISUITIOD
® WOIJ PIJIJ[0D

Auedwod 1nogy
[e1oIoWITIOD
® WOIJ PIOIA[0D

600¢ 03 LOOT
WOIJ SANITBIO]

0§ WOIJ PAIII[0D
S00C 01 8661
WoIj SuoI3ax
JUSISJJIP USASS
Ul Pajo9[0d

SOIOLIBA QAL]

S00T 03 8661
woIj suoI3ax
JUSISJJIP USASS
Ul pPajos[0d
SOIALIBA AL

S002 03 8661
woIj SuoI3ax

JUSISJIP USAIS
Ul Pajod[[0d
SOT)ALIBA AT

S002 01 8661
woIj suoi3ax

JUSISJIP USAIS

Ul pajod[[od
SOT)ALIBA AT
UOoT)RULIOJUT
ordures
[euonippy

(001/+¥9) TeL

(001/¥¥9) TL

(I11/00€) 11

(LOT/SSL) 798

(LOT/SSL) 798

(Lot/SSL) 798

(Lo1/SSL) 798
(uonoipaxd/uon

-eIqIre?)
9z1s drdwres

morg

morg

[PuISy

[ouIay

[ouIay

[ouIy

[ouIay

ordures

Jo adAg,

00SZ-00T11T

00SC—00T1T

0S81-0LS

00LT-02L

¢6¥C-8011

a3uer ng

d3ues [[ng

wu ‘9fuex
[exoads

I9)oWon
-02ds 0059
wRISAS

YIN SSO4
19)oWO0x)
-0ads 0059
UIISAS

JIN SSOA

01d/qeT
wilo®
-X®eIjuJ ssoq

JojouIoI)

-02ds 0059

wRISAS
JIN SSOd

I9)oWO0n)
-0adg 0059
w2ISAS

YIN SSOA

19)oWO0I)

-02ds 0059

wRISAS
JIN SSO4

Iojowron

-02ds 0059
waISAS

JIN SSO4
JUsdWINIISUL
AIN

Q0UBIIJ[JY

QJOUBIOJ[JoY

QJIUBIIJ[JoY

QJUBIOJ[JoY

20UBIIR[JOY

0UBIIS[JY

0UR)IJY
apowx
uonismboy

(panunuo))

IIINA

IIINA

IIINA

ILINA
uonyeoriddy

S HT1dV.L



WHEAT QUALITY ASSESSMENT USING NIRS

in Food Science and Food Safety

Comprehensive

292 | REVIEWS

(senunuo))

11014
“Te19

npnp

T10T
“Te 19
H[_UIS

(41014
“Te19
LNZery

(41014
“Te 19
Lnzery

T10C
“Te 19
IauIs

T10T
“Te 19

npnp

(41014
“Te19
LNZery

SAURIJY

€6 =%y

¢C=ddd

€70 = ADASINY

106 = M4

‘07 =add

‘61'0 = JHSINY
‘88" =

L20°0 = ADIS

98" = "2y

‘6¥0°0 = ddS

“rae d
9 =9y

€5'T1 = ADES
‘98" = "4
‘L0°€1 = ddS

09" =3y

€C=ddd

‘6'81 = ADASINY

‘16" = MU

‘09°LT = JASINY
6 =1

86 = 24

08'% = ADES
="y
‘L8 = dAS

L=

QOUBULIORIdd

NNdg

dS1d

dS1d

dS1d

4dSId

NNd4

dS1d
[PPOIN

QUON

J0 + OSIN

:(O)

40

dq0 +
as + DS

QUON

dO +ds
ssaooxdaxd

SdLIjowIowdY)

900c ut
SeaIE JUSISJIP

Ul Pajad[[oD

seaIe
Jewo-o1de
JURISHIP JYSIo
UI01J PJIa[[09

SeNALIeA OF

600¢ 03 L00T
W01 SANI[EI0]

0S WIOIJ Pajod[[0)

600C 03 L00T
W01 SAN[BI0]
0S WOIJ Pajdd[[0D
seaIe
dew[o-o1de
JULISHIp JYS1e
w01 Pajoaod
SanaLIeA OF

900c ut
SEaIE JUSISJIP

Ul PajII[[0D

600¢ 03 L00T

WOIJ SONI[eI0]
0S WIOIJ Pajod[[0)
uorjeuLIoJul
ordures
[euonppy

(12/85) 6L

(LS1/68T) L¥S

(I11/00€) T1¥

(111/00¢) 11

(LS1/682) LS

(12/8S) ‘6L

(111/00€) 1%
(uonoipaxd/uon

-eIqIre?)
9z1s ordwres

morg

[ouIay

[ouIy

[ouIay

[ouIay

Imorg

[ouIy

ordures

Jo adAg,

00SZ-00%

00L2-0¢8

0S81-0LS

0S8I-0LS

00LT—0¢€8

00SZ-001

0S8T-0LS
wu ‘98uex
[enoads

I9)oWO0n)

-02ds 0059

w2ISAS
YIN SSOA

19)
-owoxoads

JIN-1Id
Inig

01d/qeT
wiloe
-XeIjuy ssoq

01d4/qeT
Wil

-X®eIjuJ SSOq

19)
-ouwro1yoads
AIN-LA

Ioynig
19)oWI0I)
-0adS 0059
wRISAS

UIN SSO4

01d/qeT

wado®
-XeIjuy Ssoj
JudWINIISUL
AIN

Q0UBIIF[JY

QJUBIOJ[JoY

Q0UBIIJ[JY

QJOUBIOJ[JoY

AJ0UBIOJ[JoY

QJUBIOJ[JoY

0UR)IJIY
apowx
uonismboy

(panunuo))

D/d

1/d

1/d

d
uonyedrddy

S HT14dV.L



REVIEWS _| >

i Food Science and Food Safety

Comprehensive

WHEAT QUALITY ASSESSMENT USING NIRS

1102
“e 1o
npny

T10T
“Te 19

npny

1102
“re1e
npnpy

1102
“Te 19
npny

T10T
“Te19

npny

1102
“Te 19
npnN

1102
“Te 19

npny

SAURIJOY

000" = o NNd4 QUON
SO = 34 NNdJg SUON

6v0" = MM NNdd QUON
600" = 2y NNdg SUON
vE0 =2y NNdJg 9UON

VLT = m% NNd4d QUON

s =% NNdg JUON
OURULIOJIdJ PPOIN ssaooxdaxd
SOLIJWIOWAY)

900¢ ul
SeaT’ JUAIAJJIP

ur pajoa[[0D

900c ut
SEaIE JUSISJIP

Ul PajId[[0D

900c ut
SeaIe JUAIHIP

Ul pajod0D

900¢ ut
SEaT. JUSISJJIP

u pa1oa[[0D

900c ut
SeaIE JUSISJIP

Ul pPajad[[oD

900¢ Ul
Seale JUISJIIP

ur pajod0D

900¢ ul
SBaT. JUAIAJJIP

Ul pajas[iop
UorjeuLIOyuUL
ordures
[euonIppy

(12/85) 6L

(12/85) 6L

(12/85) 6L

(12/85) 6L

(12/89) 6L

(12/85) 6L

(12/85) 6L
(uonyorpaxd/uon

-eaqrred)
9z1s ojdwreg

morg

morg

morg

Imorqg

morg

morg

morqg

ordures

Jo adAg,

00S2-00%

00SZ-001

00S2-001

00S2-001

00SZ-001

00S2-001

00S2-00%
wu ‘9Suex
[enoads

I9j9W0)
-02ds 0059
WI9ISAS
JIN SSOA
I919WO0I)
-03ds 0059
wRISAS
JIN SSO4
I919WOI)
-02ds 0059
UI)SAS
YIN SSOA
J1919WOI)
-02ds 0059
UI9ISAS
JIN SSOA
I919WO0I
-03ds 0059
wRISAS
JIN SSO4
I919WOI)
-92ds 0059
wRISAS
YIN SSO4
I919WOI)
-02ds 0059
UI9ISAS
YIN SSOA
JUSWINIISUL
dIN

A0UBIIJ[JOY

QJUBIIJ[JoY

Q0UBIIJ[JY

QJOUBIOJ[JoY

QJIUBIIJ[JoY

QJUBIIJ[JY

90UR)IIIY
apowx
uonismboy

(penunuo))

9l

VIS

sa

Laa

vmd
uonjeoriddy

S HTdV.L



Comprehensive

2% | REVIEWS

WHEAT QUALITY ASSESSMENT USING NIRS

i Food Science and Food Safety

3.3.1 | Linear regression methods

Early applications of NIRS to determine rheological
parameters used linear regression methods. Hruskova et al.
(2001) conducted a comprehensive study of farinograph
and extensograph characteristics based on 39 wheat flour
samples from 1998 and 75 samples from 1999. Only FWA
values were acceptable in two models for samples from
1998 and 1999 and their joint dataset, while FMTI, FDS, and
E performance were unsatisfactory with correlation coeffi-
cients below .5 (Hruskova et al., 2001). Farinograph char-
acteristics’ prediction was improved somewhat in 2006 but
still not enough for rough screening (Dowell et al., 2006).
Mixograph characteristics were first modeled in 2006, and
the best performance was shown in the model for MWA
(R[z, =.79), while the prediction for the other parameters
was not satisfactory (Dowell et al., 2006).

As for alveograph characteristics, performance was gen-
erally poor. The NIR transmittance mode was employed in
Miralbés’s two studies (Miralbés, 2003, 2004), which con-
tanined 236 and 358 samples from differrent varieties and
regions, respectively. In 2003, only W gained satisfactory
results (Rlz) = .84). When the dataset was divided into two
using W values, and respective models were built for the
two subsets, the Rlz,s for P, P/L, and W all greatly improved.
In Miralbés’s study conducted in 2004, Rlz,s for P and W
were above .9, while the prediction in P/L was still low with
Rf, = .79 (Miralbés, 2004). A breakthrough for P/L predic-
tion (rp = .88) was shown in the study of Sinelli et al. (2011)
where the spectra were from 547 durum wheat samples
and the NIR reflectance mode was used. W prediction also
reached a high level (rp = .92) in the PLSR model (Sinelli
et al., 2011). Another linear regression method, canonical
correlation analysis (CCA), was used in P prediction, and
the result in the CCA-based model outperformed that in
the PLSR model (Gatius et al., 2017).

Low generalizability was seen in prediction of aleve-
graph characteristics. Generalizability of the calibration
model for W and P in the prediction dataset (spectra
from commercial flour) was unsatisfactory, although it was
acceptable in the validation dataset (Jirsa et al., 2008). The
study of Arazuri et al. (2012) yielded similar results. The
performance of the developed model deteriorated when an
independent dataset was used to test the model for P, P/L,
W, and extensibility (L) (Arazuri et al., 2012).

3.3.2 | Nonlinear regression methods

Regression methods were first used in 2011 by Mutlu
et al. who adopted ANNs to predict farinograph and
alveograph characteristics (Mutlu et al., 2011). Based on
reflectance spectra from 79 samples, P, FWA, and the

ratio of P/G (dough swelling) had satisfactory accuracy,
while the performance in FDDT, FDS, alveograph elastic-
ity index (I.), W, and L was unsatisfactory (RlzD <.4) (Mutlu
et al., 2011). Most recently, Williams (2020) conducted
a comprehensive study using three nonlinear regression
methods and six PLSR methods to compare their per-
formances in terms of three farinograph characteristics
FWA, FDDT, and FMTI (Williams, 2020). Each parame-
ter was individually modeled by nine different methods.
The model based on RFR had the best accuracy in three
parameters. Althougthz3 in FDDT was still unsatisfactory,
the improvement was remarkable compared to previous
results (Williams, 2020). As for FWA and FMTI, Rlz) reached
.914 and .972, respectively, both of which show their strong
robustness and generalizability (Williams, 2020).

3.4 | Quantitative determination of end
product quality

3.41 | Bread

Wheat-based products include bread, cookies, pasta, noo-
dle, cake, and others. As the major end product, bread
has been mostly studied (Sinelli et al., 2011; Abu-Ghoush,
Herald, Dowell, Xie, Aramouni, & Madl, 2008; Abu-
Ghoush, Herald, Dowell, Xie, Aramouni, & Walker, 2008).
Quality assessment of bread includes loaf tests (e.g., loaf
volume, weight, specific volume, and height), texture
analyses (e.g., crumb pore size, crumb grain score, crumb
hardness, and crust brittleness), and other analyses (e.g.,
moisture content) (Ahmad et al., 2016). Because of its non-
destructive feature, NIRS has gained increasing interest for
bread quality assessment (Abu-Ghoush, Herald, Dowell,
Xie, Aramouni, & Madl, 2008; Abu-Ghoush, Herald, Dow-
ell, Xie, Aramouni, & Walker, 2008; Amigo et al., 2019; Nal-
lan Chakravartula et al., 2019). A comprehensive summary
of bread quality assessment studies in the past 10 years is
shown in Table 6.

Baking test parameters

Among different quality prediction parameters, baking test
parameters, in particular loaf volume, had gained the most
attention. The first study of loaf volume prediction and
crumb grain score prediction was conducted by Dowell
et al. in 2006 and achieved acceptable results on loaf vol-
ume, while the results on crumb grain score were not
satisfactory (Dowell et al., 2006). Spectra from hard red
spring/winter wheat kernel and flour were used to build
calibration models for loaf volume prediction. The results
showed that the flour from hard red winter wheat had
the best performance (2006). In the study of Jirsa et al.
(2008), flour samples were from different manufacturers
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and dataset division was inhomogeneous,Rf, ofloafvolume
decreased sharply to .096, and generalizability was poor
(Jirsa et al., 2008). It was difficult to build a robust model
based on a small calibration dataset, which was shown in
loaf volume, weight, height, and density determination (Li
Vigni & Cocchi, 2013).

A comprehensive study conducted by Gabriel et al.
(2017) on prediction of baking quality had the most practi-
cal value. The study tested three NIR spectrometers plus
PLSR and canonical PLSR (CPLSR) in five different lev-
els of processed wheat ranging from no cleaning wheat
kernels to dough (Gabriel et al., 2017). The study showed
that NIR spectrometers affected model performance due
to their collection spectral range, while CPLSR, a new
method combining CCA and PLSR, was not significantly
better than PLSR. The extent of processing played the most
important role in model performance, which was consis-
tent with the findings in Dowell’s study (2006), and the best
Rf, was .81, which was achieved by the PLSR model in the
148 independent spectra of dough (Gabriel et al., 2017). In
addition, protein content can only explain 59% variability
of loaf volume, and that number decreased to 15% when
protein content was above 12%, which was inconsistent
with previous reports (Jirsa et al., 2008; Gabriel et al., 2017).

The only attempt using nonlinear regression models for
loaf volume and loaf weight prediction was based on 58
spectral samples from wheat flour (Mutlu et al., 2011). The
performances in both parameters were inferior to that in
the study of Gabriel et al. (Mutlu et al., 2011; Gabriel et al.,
2017). Considering that ANN’s superiority was based on
bulk data, ANN still has potential for bread quality predic-
tion and needs further exploration using a larger dataset
(Mutlu et al., 2011).

Bread texture analysis and other parameters

Bread storage is of great importance. Bread staling is
associated with a complicated interaction between starch,
water, and protein in bread, and it is because of this that
NIRS may be used to measure staling-related parameters
(Amigo et al., 2019; Nallan Chakravartula et al., 2019). The
first study to explore the possibility of using NIRS for mea-
suring staling was conducted by Wilson et al., 1991, and the
results show that NIRS was able to follow bread staling in
a specific time scale. A further study compared NIRS with
the texture analyzer for measuring bread change during
storage (Xie et al., 2003). The results showed that NIRS was
comparable to the textual analyzer, even better in terms
of measuring texture hardness (for bread slices and bread
loaves), which was possibly due to NIR spectra simultane-
ously containing chemical and physical information (Xie
et al., 2003). In addition, the results indicated that the pre-
diction for loaves was better than that for the slices both in

hardness and storage time (Xie et al., 2003). In the study
of Ringsted et al. (2017), changes in bread crumb hardness
during aging were correlated with spectra obtained from
NIRS and MIRS, respectively. The Pearson’s correlation
coefficient was .98, demonstrating its potential in bread
staling detection (Ringsted et al., 2017). Another study on
the application of NIRS in storage time prediction was con-
ducted in 2015. A total of 72 samples distributed in seven
different storage times were used to build PLSR models,
and the optimal PLSR model performance achieved aanz3
of .969 (Cevoli et al., 2015).

Application as an assistant-characterization tool

Besides the direct application of NIRS in bread quality
assessment, in some studies of food additives, NIRS was
used as an assistant tool for quality assessment. In the
studies of Abu-Ghoush et al. on antimicrobial agents and
preservation addition for shelf-life extension, NIRS was
successful to model loaf freshness based on the spectra
collected from the bottom and top of the loaves (Abu-
Ghoush, Herald, Dowell, Xie, Aramouni, & Madl, 2008;
Abu-Ghoush, Herald, Dowell, Xie, Aramouni, & Walker,
2008). Recently, NIRS was used to detect crumb texture
(hardness) and assess the staling of white bread and the
effects of antistaling enzymes (Amigo et al., 2019). For
the untreated loaf samples, the PLSR model obtained sat-
isfactory results (Rf, = .86), but the results were inferior
for the samples treated with antistaling enzymes, possibly
because enzyme treatment led to the increase of nonlinear-
ity in the staling process (Amigo et al., 2019).

In a study of the edible coating of mini-buns, PLSR
obtained satisfactory results predicting both crumb chewi-
ness and hardness in one-layer coating and two-layer
coating buns, with the latter results being better (Nallan
Chakravartula et al., 2019). In addition, moisture contents
of the top, bottom, and center of the one- or two-layer coat-
ing buns were modeled using PLSR, and the results for
one-layer coating buns were better than those for two-layer
coating buns (Nallan Chakravartula et al., 2019).

3.42 | Other wheat-based products

In the past 10 years, NIRS was also used to study the baking
parameters in cake, pastas, and cookies (Table 6). Nutri-
tional parameters that consider the daily needs of con-
sumers gained the most attention. In 2011, the protein,
lipid, and sugar contents in different types of bread, cake,
doughnuts, and croissants were modeled by PLSR based
on spectra collected from bakery product powders (Szigedi
et al., 2011). Unfortunately, the study had no prediction
dataset. Subsequently, a study conducted in 2019 by Neves
et al. added a prediction dataset for model evaluation and
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also extended nutritional parameters. NIRS was applied in
pasta blended with tomato sauce to measure nutritional
parameters including energy, carbohydrate, fat, fiber, pro-
tein, and sugar. The pasta and sauce were produced by dif-
ferent manufacturers. A handheld NIR spectrometer was
used to collected five blend proportions (0%, 25%, 50%,
75%, and 100%) (Neves et al., 2019). TheRf,s were all above
.85 and even reached .90 for fiber content, which proved
that not only could these parameters be determined in
wheat or flour, but also in final processed products (Szigedi
et al., 2011; Neves et al., 2019). Recently, shelf life of pasta
stored at different temperatures was modeled based on
NIRS information, and the results showed that absorption
wavelengths related to gluten, starch, and water played an
important role in the great model performance (rcy > .98)
(Zardetto et al., 2021).

The spatial imaging ability of HSI made it possible to
detect the entire samples instead of local areas. Previous
work in NIRS determined wavelengths that are highly cor-
related to water, and Andresen et al. (2013) used this con-
clusion to select wavelengths to measure water content in
butter cake. The water content in each visualized pixel of
the cake was predicted. The average water content of the
whole cake was then calculated with the RPD = 0.22%.
Another strategy was to first calculate the average spectra
region of interest (ROI) and then use it for model devel-
opment for global parameters. Multiple combinations of
wavelengths of the average spectra of ROI were respec-
tively modeled by PLSR methods for hardness and mois-
ture determination (Polak et al., 2019). Moisture determi-
nation gained good results with even single wavelengths
achieving anR} = .9449, while the R} for hardness was
.7956 (Polak et al., 2019). Using the full wavelength range of
the spectra gained the best performance both in moisture
and hardness determination, which was consistent with
previous predictions based on spectra collected from flour
and kernels (Polak et al., 2019). Recently, water activity and
storage time of cakes were modeled, and the PLSR models
resulted inR? =767 and RMSEP = 0.013, and R} = .835 and
RMSEP = 1.242, respectively, both of which still need fur-
ther improvement (Sricharoonratana & Teerachaichayut,
2020; Sricharoonratana et al., 2021).

4 | CONCLUSION AND PERSPECTIVES

This review provides an overview of NIRS methodology in
biological material analysis and its application in the quan-
titative determination of wheat and wheat product qual-
ity. The pretreatment methods, spectral wavelength selec-
tion methods, outlier disposal, dataset division, regression
methods, model evaluation, and industry applications are
introduced. There exist stable and highly accurate mod-

i Food Science and Food Safety

els for the determination of most of the wheat compo-
sition and associated parameters. Performance for some
rheological properties and end product quality is satis-
factory, though further improvement is expected in such
aspects. Most studies still depend on common pretreat-
ment methods (e.g., SNV, MSC, and FD), manual spec-
tral wavelength selection or full ranges, and linear regres-
sion methods (e.g., PLSR and multiple linear regression
[MLR]). Although some of these studies achieved good
accuracies, the models that adopt cutting-edge pretreat-
ment and wavelength selection methods as well as regres-
sion methods are more likely to achieve better results. On
the other hand, the main limitations of NIRS are its high
dependence on dataset properties and model development
through chemometrics methods (Gatius et al., 2017; Man-
ley, 2014).

Possible directions for future studies on the application
of NIRS in wheat are proposed as follows:

1. Integration of different kinds of spectroscopic tech-
niques and establishing different types of spectral
databases can be the basis for more robust calibration
models. For example, FS has shown feasibility for pre-
dicting analytical, rheological, and baking parameters
(Ahmad et al., 2016). The HSI technique can provide
extra information for determining the spatial distribu-
tion of quality parameters, which is in great demand for
wheat and wheat products assessments (Caporaso et al.,
2018a).

2. Introduction of new pretreatment methods and non-
linear regression methods for model development is
essential. Spectral data have high dimensions, and how
to pretreat and extract representative wavelengths and
perform regression analysis is the focus of data science.
Experiments should be conducted to test the perfor-
mance of new methods and modify them for wheat
quality assessments, for example, the applications of
restricted Boltzmann machine (RBM) and DBN, which
had made breakthroughs in model performance ( Li
et al., 2017; Harrington, 2018).

3. It is necessary to extend the range of reference values
beyond wet chemistry experiments by using manual
interventions in samples. Larger dataset, which refers
to more samples and wider range of reference values,
has shown its superiority in reliable and robust model
building when combining with advanced chemomet-
rics methods (Bian et al., 2018; Cui & Fearn, 2018; Del-
wiche et al., 2018; Dong & Sun, 2013; Gatius et al., 2017;
Owens et al., 2009; Li et al., 2017; Mutlu et al., 2011;
Salimi Khorshidi et al., 2018; Williams, 2020; Zhang
et al., 2019). By manual intervention in cultivation or
postharvest processing, it is possible to gain a larger
dataset. For example, extraneous wheat proteins could
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be added into wheat flour to increase the protein con-
tent and collect its associated NIR spectra. The compo-
sitions of natural wheat, its flour, and commercial prod-
ucts are usually at a relatively narrow range, so manual
intervention is in demand for creating different gradi-
ents of a specific composition for acquisition of spectral
data associated with a larger range of reference values.

4. A secondary calibration model may be taken into con-
sideration to calibrate prediction values due to the inter-
active effects of different compositions. External factors
(e.g., growing season) and prediction values (e.g., pro-
tein content and baking parameters) should be com-
bined to correct the predicted values. For example, it has
been shown that when protein content reached a cer-
tain level, baking quality no longer increases with the
increase of protein content (Gabriel et al., 2017). There-
fore, after prediction of the first calibration, the weight
of protein content in baking quality should be revised
in the second calibration model to gain more accurate
assessment.

5. Applications in micronutrient analysis, such as
polyphenols, vitamins, and minerals, need to be
extended. There were few studies on this topic, and the
methods for calibration model development also need
to be advanced for these low concentration components
(Tian et al., 2021).

6. Efforts should be made for practical and commercial
application of NIRS in shelf life prediction of wheat
products, since the performance of application of NIRS
in analyzing compositions as well as the end prod-
ucts has been improved gradually over the years (Gao
et al., 2017; Pandey et al., 2018; Jiang et al., 2020; Sricha-
roonratana & Teerachaichayut, 2020; Sricharoonratana
et al., 2021; Zardetto et al., 2021).

7. Reference values from the sensory evaluation of end
products can supplement current reference values from
wet chemistry experiments. Given the consistency in
industrial manufacturing parameters, it is feasible to
employ a professional sensory evaluation group to
assess end products based on standard manufacturing
processes and then combine these assessments with
spectral data to develop calibration models.
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