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a b s t r a c t

Food-derived bioactive peptides (FBPs) are gaining interest due to their great potential in agricultural
byproduct valorization and high-activity peptide screening. The introduction of bioinformatics into FBP
studies further enhances the prospects of this field. This review provides a comprehensive overview and
critical insight into the latest advances in bioinformatics-driven FBPs studies. The roles of databases,
proteolysis simulation, bioactivity potency evaluation, quantitative structure-activity relationships
(QSAR) models, molecular docking, molecular dynamics simulation, and free energy calculation in FBP
studies are covered. Furthermore, critical issues related to QSAR model development, molecular docking,
and integrated bioinformatics strategies are highlighted. By leveraging these bioinformatics approaches,
researchers can fully utilize existing knowledge about identified peptides for checking novelty, evalu-
ating bioactivity potency as well as rational peptide and protein hydrolysate design. QSAR models and
molecular docking enable efficient screening of thousands of peptide candidates and generate new in-
sights into bioactivity mechanisms. Directions for future research and challenges in current studies are
also discussed. The employment of bioinformatics will significantly accelerate the process from the
identification of high-potential FBPs to product development, assist in wet chemistry experiment design
for targeted protein hydrolysates preparation, and ultimately enhance the long-term development of
nutraceutical, pharmaceutical, and cosmeceutical industries.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Biologically active peptides (or bioactive peptides) are protein
fragments that contain 2e20 amino acid residues joined by peptide
bonds and exhibit positive biological effects. Food proteins are a
sustainable source for bioactive peptide preparation and are gain-
ing interests from academic researchers and industries [1,2]. The
number of studies on food-derived bioactive peptides (FBPs) in
2022 are expected to quintuple the number ten years ago (Fig. 1).
The growing interest in FBPs is driven by the increasing demand for
natural nutraceuticals, perceptions of the safety of synthetic
products, sustainability, and, most importantly, the diverse bio-
activities exhibited by FBPs and their potential to relieve the health
burdens [3,4]. Common bioactivities of FBPs include antioxidant,
antihypertension, anti-diabetes, and anti-inflammation activities
(Fig. 1). Most FBPs exhibit their bioactivities at the protein level by
inhibiting enzymes (e.g., angiotensin-converting enzyme inhibition
for antihypertension) or through protein-ligand interactions (e.g.,
the Keap1eNrf2 interaction for cytoprotective response regula-
tion), although the bioactivities of a few FBPs might not involve
proteins (e.g., capturing free radicals) [5e10].

FBPs need to be liberated from protein precursors (animal, plant,
edible insect protein) to exert their functions (Fig. 1). Enzymatic
hydrolysis is the most common method to generate FBPs. This
approach requires only mildly controlled production conditions,
results in good cleavage specificity and efficiency, and is free of
organic solvents and toxic chemicals. Through wet chemistry ex-
periments and in vitro and in vivo characterization, thousands of
FBPs have been identified and characterized in the last few decades,
and some of them (e.g., Val-Pro-Pro) have been commercialized
[3,11]. However, these conventional approaches suffer from low
efficiency and high cost, and they also rely heavily on advanced
instruments and trained personnel. Moreover, most mechanisms of
proteinepeptide interactions can only be elucidated experimen-
tally by X-ray crystallography or nuclear magnetic resonance
spectroscopy (NMR), both of which are hindered by sample

mailto:yonghui@ksu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trac.2023.117051&domain=pdf
www.sciencedirect.com/science/journal/01659936
www.elsevier.com/locate/trac
https://doi.org/10.1016/j.trac.2023.117051
https://doi.org/10.1016/j.trac.2023.117051


Fig. 1. Status quo of food protein-derived bioactive peptide research. Note: Data on the
number of publications per year were obtained from Web of Science in August 2022
using “food & bioactive peptide” as keywords; BrCN: cyanogen bromide.
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preparation, and it is impossible to employ such protocols to
exhaust all the interaction mechanisms between FBPs and protein
receptors [12].

To circumvent these limitations and accelerate FBP screening
and mechanism explanation, some researchers turned to bioinfor-
matics approaches [1,4,7,10,13e15]. As an in silico method, bioin-
formatics can fully exploit known FBPs, protein sequences, cleavage
sites of enzymes or chemicals, and computational chemistry
knowledge to eliminate guesswork and guide experiment design
(e.g., enzyme selection or purification condition setting)
[7,13,16,17]. In addition, bioinformatics can be used to screen FBP
bioactivities; explore interaction mechanisms; evaluate bioavail-
ability, allergenicity, ADMET (absorption, distribution, metabolism,
excretion, and toxicity) properties, and taste-evoking properties
[2,17e23]. The field of bioinformatics has made considerable
progress, including newly developed algorithms and models, web
servers, software, and docking strategies, yet its potential in FBPs
discovery has not yet been fully explored.

To our knowledge, there is currently no comprehensive or in-
depth review for readers who have expertise in conventional
FBPs studies but lack knowledge in bioinformatics to accelerate
their studies or who would like to explore more possibilities with
advanced bioinformatics tools. To address this gap, this review
presents the whole spectrum of bioinformatics-aided procedures
from FBP preparation to bioactivity, bioavailability, taste, allerge-
nicity, and ADMET evaluation. Specifically, the application of
quantitative structure-activity relationships (QSAR), molecular
docking, and molecular dynamics simulation in FBP virtual
screening is highlighted, and commonly used and advanced
2

databases, web servers, and software are summarized. Further-
more, suggestions for future research are given to accelerate FBPs
studies from bench to market, including the needs in database
construction, structure construction of unavailable targeted pro-
teins, trends in QSARmodel development and molecular docking&
molecular dynamics simulation, utilization of hardware for
computation-intensive tasks, ensemble strategies for accuracy
improvement, dataset clean & augmentation, and multifunctional
peptide screening. In short, this review gathers the latest advances
in bioinformatics and FBPs studies to advance the long-term, syn-
ergistic developments of both fields and guide the sustainable
future production of value-added products from agricultural
products.

2. Application of databases and proteolytic simulation in
FBPs screening and potency evaluation

In the past decades, millions of protein sequences and hundreds
of FBPs were identified and characterized by in vitro and in vivo
studies, most being composed of the 20 proteinogenic amino acids.
These findings contributed to the creation of bioactive peptide
databases for efficient retrieval of information. As of now, dozens of
bioactive peptide databases have been built, and each documents
one or more bioactivities (e.g., BIOPEP) (Table 1). Users can use
these databases to retrieve information (sources of origin, reference
articles, bioactivities, etc.) about the peptide of interest using a one-
letter sequence or three-letter sequence from the reported peptides
[24,25]. In addition, these databases classify peptides into different
categories (e.g., based on their source of origin, bioactivity, etc.),
which simplifies the data mining procedure for other bioinfor-
matics studies (e.g., QSAR analysis). It should be noted that no
existing bioactive peptide database can be expected to contain all
the latest data, so manual double-checking is always recommended
[26e28]. In addition, government-led databases for proteins (i.e.,
Uniprot (The Universal Protein Resource), NCBI (The National
Center for Biotechnology Information), and RCSB PDB (Research
Collaboratory for Structural Bioinformatics Protein Data Bank)
provide one-stop portals for protein sequence retrieval with all
available sequence information (Table 1). In silico proteolysis suc-
cessfully connects the protein sequence databases and bioactive
peptide databases to advance bioactive peptide discovery and
bioactivity potency evaluation (Fig. 2).

2.1. Database-driven approaches

The pure database-driven approach has three steps: 1. parent
protein retrieval; 2. in silico proteolysis; 3. identification of bioactive
peptides and additional evaluation (Fig. 2). This technical route was
adopted in most studies and was combined with QSAR or molecular
docking methods for unknown FBPs [19,24,29,30,30e37]. As shown
in Table 2, most database-driven FBPs studies are related to the
angiotensin-I-converting enzyme (ACE) inhibitory activity and
dipeptidyl peptidase (DPP) IV inhibitory activity since these bio-
activities are highly correlated to the most common and urgent
chronic diseases (hypertension and diabetes). In addition, database-
driven FBP studies tend to limit their data source to BIOPEP database
where the number of peptides with ACE and DPP-IV inhibitory ac-
tivity ranks first and fourth, respectively [25]. This limitation in data
can be improved by searching in other peptide databases (Table 1).
This strategy was adopted in the study of Martini et al., where
BIOPEP andMBPDBwere combined to search the identified peptides
from LC-MS for further selection [38].

A few studies adopted a partial database-driven approachwhich
employed only peptide bioactivity databases in their FBP studies
(Table 2) [48e51]. In the studies of Sayd et al. and Devita et al.,



Table 1
Summary of protein information databases, proteolysis simulation web servers, bioactive peptide databases, mass spectroscopy data processing software, physiochemical
property predictionweb servers, peptide structure predictionweb servers, and software/webserver for protein and peptide structure building, modification, and visualization.

Protein information database
Name Website Description*
UniProt https://www.uniprot.org/ The most commonly used protein database. Contains Swiss-Prot with 568,002 manually reviewed

protein sequences and TrEMBL with 226,771,948 unreviewed protein sequences
NCBI Protein https://www.ncbi.nlm.nih.gov/protein/ Collection of protein sequences from 7 public databases (including sequences translated from

annotated coding regions from genes)
RCSB https://www.rcsb.org/ Most commonly used protein structure database for molecular docking and molecular dynamics

simulation. Contains 194,259 protein three-dimensional structures from X-ray crystallography,
NMR, and electron microsopy experiments.

EMDB https://www.ebi.ac.uk/emdb/ Contains 21,807 entries of electron cryo-microscopy maps and tomograms of macromolecular
complexes and subcellular structures

Proteolysis simulation web server
Name Website Description
PeptideCutter https://web.expasy.org/peptide_cutter/ The most commonly used tool. Has 34 different enzymes and chemicals available for proteolytic

simulation
FeptideDB http://www4g.biotec.or.th/FeptideDB/enzyme_

digestion.php
Has the same enzymes as PeptideCutter

BIOPEP-UWM https://biochemia.uwm.edu.pl/biopep-uwm/ Has 34 different enzymes from microbes, vegetables, fruits, and humans
AHPP http://hazralab.iitr.ac.in/ahpp/index.php Has 10 enzymes from the gastrointestinal tract and 7 enzymes from vegetables and fruits
SpirPep http://spirpepapp.sbi.kmutt.ac.th/UserGuide.html Has 10 enzymes with 1e3 miss cleavage options
Bioactive peptide database
Name Website Description**
DFBP http://www.cqudfbp.net/ Contains a total of 6276 peptide entries in 31 types from different food sources (last updated in

2022)
BIOPEP-UWM https://biochemia.uwm.edu.pl/ Most commonly used database in FBP studies. Contains 4485 bioactive peptides with 58 bioactivity

categories from literature and 533 sensory peptides and amino acids (last updated in 2019)
FeptideDB http://www4g.biotec.or.th/FeptideDB/index.php Combination of 12 public bioactive peptide databases and peptides manually extracted from

literature (last updated in 2019)
SpirPep http://spirpepapp.sbi.kmutt.ac.th/

BioactivePeptideDB.html
Combination of 13 public peptide databases (28,334 bioactive peptides)

CAMPR3 www.camp3.bicnirrh.res.in Contains 10,247 antimicrobial peptide sequences captured by analysis of 1386 antimicrobial
peptide sequences from experiments (last updated in 2019)

BaAMPs http://www.baamps.it/ Antimicrobial peptides (AMPs) specifically tested against microbial biofilms (last updated in 2015)
YADAMP http://yadamp.unisa.it/about.aspx Contains 252 antimicrobial peptides (last updated in 2018)
BioPepDB http://bis.zju.edu.cn/biopepdbr/index.php Contains 4807 bioactive peptides (51.07% are antimicrobial peptides, 34.9% are antihypertensive

peptides, and 13.21% are anticancer peptides.) (last updated in 2018)
AHTPDB http://crdd.osdd.net/raghava/ahtpdb/ Contains about 1700 antihypertensive peptides (last updated in 2015)
BERT4Bitter http://pmlab.pythonanywhere.com/dataset Contained 256 bitter peptides (last updated in 2021)
DBAASP https://dbaasp.org/home Contains 19,902 antimicrobial/cytotoxic peptides with detailed 3D structure information (last

updated in 2021)
AVPdb http://crdd.osdd.net/servers/avpdb/ Contains 2683 antiviral peptides (last updated in 2014)
TumorHoPe http://crdd.osdd.net/raghava/tumorhope/ Contains 744 tumor homing peptides (last updated in 2012)
CancerPPD http://crdd.osdd.net/raghava/cancerppd/index.php Contains 3491 anticancer peptides (last updated in 2015)
CPP site2.0 http://crdd.osdd.net/raghava/cppsite/ Contains 1855 cell penetrating peptides (last updated in 2015)
BRAINPEP https://brainpeps.ugent.be/ Blood-brain barrier peptide database (last updated in 2012)
NeuroPep http://isyslab.info/NeuroPep/ Contains 5949 neuropeptides (last updated in 2015)
Hemolytik http://crdd.osdd.net/raghava/hemolytik/ Contains about 3000 hemolytic and 2000 non-hemolytic peptides (last updated in 2013)
MBPDB http://mbpdb.nws.oregonstate.edu/ Contains 994 milk-derived bioactive peptides (last updated in 2021)
FermFooDb https://webs.iiitd.edu.in/raghava/fermfoodb/ Contains 2325 bioactive peptides from fermented food (last updated in 2021)
THPdb http://crdd.osdd.net/raghava/thpdb/index.html Contains 1238 FDA-approved therapeutic peptides (last updated in 2017)
StraPep http://isyslab.info/StraPep/index.php Contains 3791 bioactive peptide 3D-structures (last updated in 2018)
Mass spectroscopy data processing software
Name Website Description
Mascot https://www.matrixscience.com/search_form_

select.html
Searching software for peptide sequence identification using MS data and precursor proteins

PEAKS X https://www.bioinfor.com/peaks-studio/ Searching software for peptide sequence identification using MS data and precursor proteins
Physiochemical property prediction web server
Name Website Description
PepDraw http://www2.tulane.edu/&#x223C;biochem/WW/

PepDraw/
The most commonly used tool. Predicts net charges, isoelectric points, hydrophobicity, molar
extinction coefficient, and molecular weight

AhtPom http://crdd.osdd.net/raghava/ahtpin/allinone.php Predicts net charges, isoelectric points, hydrophobicity, hydrophilicity, steric hindrance, solvation,
net hydrogen, charge, and molecular weight

Compute pI/Mw https://web.expasy.org/compute_pi/ Predicts isoelectric point and molecular weight
ProtParam https://web.expasy.org/protparam/ Predicts molar extinction coefficient, estimated half-life, instability index, aliphatic index, and

grand average of hydropathicity
PepCalc https://pepcalc.com/ Predicts molar extinction coefficient, water solubility, net charges at neural pH, isoelectric points,

and molecular weight
Peptide

solubility
calculator

https://pepcalc.com/peptide-solubility-calculator.
php

Predicts solubility

Peptide structure prediction web server
Name Website Description
DEBT https://comp.chem.nottingham.ac.uk/debt/ Secondary structure prediction
PPIIPred Secondary structure prediction

(continued on next page)
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Table 1 (continued )

http://bioware.ucd.ie/&#x223C;compass/
biowareweb/Server_pages/ppIIpredSEQUENCE.php

PEPstrMOD http://osddlinux.osdd.net/raghava/pepstrmod/nat_
ss.php

Tertiary structure prediction

APPTEST https://research.timmons.eu/apptes Tertiary structure prediction
PEP-FOLD3 https://bioserv.rpbs.univ-paris-diderot.fr/servixes/

PEP-FOLD3
De novo structure prediction

PEP-FOLD https://bioserv.rpbs.univ-paris-diderot.fr/services/
PEP-FOLD/

De novo structure prediction (less optimized than PEP-FOLD3 but includes options such as disulfide
bridges unavailable in the newer version)

Software/web server for protein and peptide structure building, modification, and visualization
Name Availability Website
MolView Free https://molview.org/
VMD Free for academic use http://www.ks.uiuc.edu/Research/vmd/
DiscoveryStudio Free for academic use https://discover.3ds.com/discovery-studio-visualizer-download
Chimera Free for academic use https://www.cgl.ucsf.edu/chimera/
Avogadro2 Free and open source https://two.avogadro.cc/
PyMol Free for academic use https://pymol.org/2/

Note: * The number of sequences was obtained in August 2022; ** The “last updated” time refers to the time of the latest publication of the databases or notice of updates on
the database websites.
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liquid chromatography-mass spectroscopy (LC-MS) was used to
identify the FBPs released from the protein precursor, and the
BIOPEP database was employed to search the LC-MS identified FBPs
[49]. Proteolytic simulation was used to guide enzyme selection or
enzyme combination for protein substrates in order to maximize
the value of desired functional food hydrolysis [51,53,54]. There are
disadvantages to these studies. Usually, web servers can work only
on one type of bioactivity for one protein subject to cleavage by one
enzyme at a time, which makes it difficult to conduct large-scale
analyses [51]. Employing some automation of data mining tools
(e.g., Selenium WebDriver) could significantly reduce repeated
work. Besides, the order of enzyme addition for hydrolysis is not
taken into consideration by most of the available proteolysis
simulation tools (e.g., PeptideCutter, BIOPEP-UWM, etc.). Our lab
recently developed and published an improved version (R-Pepti-
deCutter) overcoming this defect. In addition, this improved tool
allows researchers to run large-scale simulation and generate re-
sults in an easily readable format with Python scripting [55].

Additionally, QSARweb servers arewidely employed in database-
driven approaches to supplement the evaluation of bioactivity po-
tential, physicochemical properties, allergenicity, toxicity, and
ADMET [19,32,37,56,39]. However, most web servers might not up-
date their built-in models with the latest reported data.

Overall, it is highly recommended that researchers employ two
ormore peptide databases and prediction tools built and developed
by different research groups using different strategies to validate in
silico results and provide more robust predictions. The most
advanced and user-friendly web servers that can be used in
database-driven studies are summarized in Table 3.
2.2. Bioactivity potency evaluation

Bioactivity potency evaluation of parent proteins is a common
step after database searching (Table 2). A significant number of FBP
studies aim to valorize byproducts from the food industry, and the
most practical FBP production strategy using byproducts is to
produce FBPs as a hydrolysis mixture instead of pure FBPs, because
the latter incurs high purification cost [2,31,57]. Some indica-
torsde.g., A (the occurrence frequency of peptides in a protein), AE

(the occurrence frequency of released peptides in a protein under a
specific enzyme), DHt (theoretical degree of hydrolysis)dwere
proposed to evaluate the potential bioactivity of protein hydrolysis
(Table 2). The distinction between indicators A and AE as well as B
(the potential bioactivity of a protein) and BE (the potential bioac-
tivity of released peptides in a protein under a specific enzyme)
should also be heeded. For example, A is based on the occurrence
4

frequency of the FBPs in the protein sequence regardless of the
availability of cleavage needs from available enzymes. For some
potential FBP sequences, there might be no enzymes capable of
releasing them in practice [34,35,39,41,46,47]. Modified versions of
indicators (e.g., AE and BE) were proposed for such situations
[19,32,33]. BE is valuable because it can be directly used for
decision-making on the feasibility of specific protein substrates for
bioactive hydrolysate production under optimal enzymes, and it
takes into consideration cost, efficiency, and the expected positive
effects on health. An interesting study of large-scale protein
bioactivity potency evaluation based on BE was conducted for
prediction of 40 pigeon proteins hydrolyzed by pepsin, papain, and
thermolysin, and the theoretically generated peptides were pre-
dicted by modeling eight parameters using the random forest
method; the eight parameters are frequencies of the six amino acid
residues (A, P, V, G, L, F), hydrophobicity values, and AE [58]. Using
only these eight parameters might have simplified the model
development procedures, but also undermined the prediction po-
wer of the model [58].

With reasonable indicators and proteolytic simulation, the last
prerequisite for comprehensive bioactivity potency evaluation is an
all-inclusive database that can be used to search for the bioactivity
of the theoretical peptide. However, purifying or synthesizing all
the theoretically possible peptides (i.e., 400 dipeptides, 8000 tri-
peptides, and 160,000 tetrapeptides, etc.) is not possible in reality,
let alone the evaluation of multiple possible distinct bioactivities.
Therefore, there will always be FBPs with unknown bioactivity,
which will undermine potency evaluation accuracy [14,58,59]. The
alternative approach is to combine reported data and predictive
data fromQSARmodels (see Section 3) for potency evaluation. Such
attempts are expected to be used in in silico studies in the future.
2.3. Challenges in proteolysis simulation

In silico prediction was mainly employed as a qualitative tool for
hypothesis proposal and experimental validation, without quanti-
tative validation of predictions for peptides released by degradation
of proteins [29,30,34,37,38,51,50,53,41,43]. With the help of QSAR
models, database-driven approaches have the potential to become
a quantitative tool for predicting the bioactivity of peptides
released from proteins; however, there has not yet been a sys-
tematic quantitative validation of this approach. A big challenge is
that the gap between peptides theoretically predicted using pro-
teolysis simulation and those identified by wet chemistry needs to
be bridged in order to advance the quantitative evaluation of pro-
tein bioactivities.

http://bioware.ucd.ie/&amp;#x223C;compass/biowareweb/Server_pages/ppIIpredSEQUENCE.php
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Fig. 2. Overall workflow of bioinformatics application in food protein-derived bioactive peptide studies.
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Some experiments have shown discordance between wet
chemistry identification and in silico proteolysis [16,60,61]. A study
comparing in silico and in vitro analysis conducted by Chatterjee
et al. showed deviations not only between in vitro identified pep-
tides and in silico predicted peptides but also between two different
in silico strategies [60]. However, the details of this study limit
generalization. The experimental sample used for the in vitro
analysis, whey protein concentrate, was a mixture of various pro-
teins, while the in silico proteolytic simulation considered only the
two proteins a-lactalbumin and b-lactoglobulin, accounting for
some of the disagreement [60]. Considering that purified forms of
these two proteins are commercially available, further experiments
could more directly compare the in silico and in vitro methods,
allowing for a better understanding of the origin of the disagree-
ment and checking the limitations of current proteolytic simulation
methods for predicting experimental results.

There are two major challenges for predicting the peptides
released from a given protein source. First, protein naturally
occurring in foods or agricultural by-products is invariably of a
complex composition. This challenge could be addressed by
obtaining better quantitative data on the protein composition of
the protein source. Quantitative characterization of protein
composition could be obtained from size exclusion
5

chromatography (SEC) or sodium dodecyl-sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) [62,63]. In proteolytic simulation,
this data could be used to assign a weight to each of the predom-
inant protein sequences present in a source material.

The second challenge is from limitations of the in vitro experi-
ments. Other components in the protein substrates (e.g., lipids and
carbohydrates), environmental conditions, enzyme quality, and
each protein's secondary, tertiary and quaternary structures
contributed to inconsistency in different in vitro experiments
[53,64]. Some attempts have been made to optimize in vitro ex-
periments such as using microwave pre-treatment of protein sub-
strates, heating, high hydrostatic pressure, pulsed electric fields,
and ultrasound to unfold protein structure and improve protease
accessibility during hydrolysis, and response surface methodology
to select the hydrolysis conditions [57,64]. After hydrolysis, the
smaller molecular weight fractions generally exhibited higher
bioactivity, and the physicochemical properties of these peptides
were the main factor for fractionation methods design. Some
physicochemical property prediction web servers have been
developed (Table 1), which can be used to guide extraction and
determination protocols in wet chemistry experiments.

Such efforts have contributed to narrowing the gaps between in
silico and in vitro experiments. Future studies are expected to



Table 2
Database-driven FBP virtual screening and bioactivity potency evaluation studies in the last 5 years.

Pure database-driven approach

Protein source Bioactivity Bioactivity potency
evaluation*

Additional comments Reference

Chickpea ACE inhibitory
activity

A, B, AE, BE Conducted ADMET evaluation and molecular docking for interaction mechanism explanation [19]

Sheep milk
protein

ACE inhibitory
activity
DPP-IV inhibitory
activity

A, AE Used PeptideRanker for bioactivity evaluation; conducted physicochemical property and
toxicity evaluation; used molecular docking for virtual screening and mechanism explanation.

[39]

Mammal milk
proteins

ACE inhibitory
activity

Molar concentration of
released peptides

Also searched for DPP-III inhibitory activity, antioxidant activity, hypo-cholesterolemic activity,
immunomodulatory activity, and antithrombotic activity in FBPs with ACE inhibitory activity

[40]

Goat casein ACE inhibitory
activity

A, B Used PeptideRanker and AHTpin for bioactivity evaluation. Conducted in vitro and in vivo
validation

[41]

Pumpkin seed ACE inhibitory
activity

A, AE, W Used molecular docking for virtual screening and molecular dynamics simulation for
refinement. Conducted ADMET evaluation and in vitro validation

[42]

Porcine liver Antioxidant activity Not mentioned Used PeptideRanker for bioactivity evaluation. Conducted in vitro and in vivo validation [43]
Flaxseed ACE inhibitory

activity
Renin inhibitory
activity

Not mentioned Conducted physicochemical property, ADMET, and drug-likeness evaluation; used molecular
docking for mechanism exploration and affinity comparison with common drugs (aliskiren and
captopril)

[32]

Tomato seed ACE inhibitory
activity
DPP-IV inhibitory
activity
Antioxidant activity

A, AE, sum of AE Conducted allergenicity and toxicity evaluation [33]

Animal and fish
collagens

ACE inhibitory
activity
DPP-IV inhibitory
activity

AE, DHt, W Conducted ADMET evaluation; used PeptideRanker for bioactivity evaluation; used
SwissTargetPrediction to predict potential interaction between selected FBPs and other
enzymes and proteins

[24]

Bovine milk
protein

ACE inhibitory
activity
DPP-IV inhibitory
activity
Antioxidant activity

Molar concentration of
released peptides

Used PeptideRanker for bioactivity evaluation and comparison of released FBPs with digestion-
resistant peptides

[44]

Milk and meat
derived
protein

ACE inhibitory
activity
Antioxidant activity
Opioid activity

Not mentioned Conducted physicochemical property and toxicity evaluation for FBPs and peptides; used
PeptideRanker for bioactivity evaluation; conducted in vitro and in vivo validation

[29]

Tilapia ACE inhibitory
activity

DHt Conducted physicochemical property and toxicity evaluation and in vitro and in vivo validation [45]

Flaxseed ACE inhibitory
activity
DPP-IV inhibitory
activity
Antioxidant activity

A, AE, DHt, W Conducted physicochemical property and toxicity evaluation [31]

Oyster ACE inhibitory
activity
DPP-IV inhibitory
activity

Not mentioned Validated DHt of enzymes by in vitro hydrolysis; used proteolytic simulation to guide enzyme
selection

[30]

Yak milk ACE inhibitory
activity

A Conducted toxicity evaluation [46]

Salmo salar ACE inhibitory
activity

Not mentioned Conducted physicochemical property and toxicity evaluation; used molecular docking
screening and in vitro study for validation

[37]

Giant grouper
roe

ACE inhibitory
activity
DPP-IV inhibitory
activity

A Conducted in vitro study on trypsin in-gel digestion [34]

Bovine casein Anticancer activity
Antithrombotic
activity
Anti-inflammatory
activity
Immunomodulating
activity

Not mentioned Used PeptideRanker for bioactivity, toxicity, and allergenicity evaluation [36]

Caulerpa
RuBisCO

ACE inhibitory
activity
DPP-IV inhibitory
activity
Antioxidant activity
Neuroprotective
activity
Antithrombotic
activity

A, AE Proteins only had 49% sequence homology among 28 species [47]

Rice bran ACE inhibitory
activity

A, B, AE, W Used PeptideRanker for bioactivity, physicochemical property, allergenicity, and toxicity
evaluation

[35]
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Table 2 (continued )

Pure database-driven approach

DPP-IV inhibitory
activity

Partial database-driven approach
Protein source Chemistry experiments and other analysis Database-driven analysis Reference
Tuna skin

collagen
FBP identification by LC-MS;
physicochemical property evaluation

All the available bioactivities of identified FBPs were searched in BIOPEP [48]

Cheese FBP identification by LC-MS; FBPs with anti-
diabetic activity were synthesized and
confirmed by in vitro experiments

Identified FBPs were searched in BIOPEP and MBPDB (Table 1) [38]

Food matrix FBP identification by LC-MS; FBP
conformation prediction

All the available bioactivities of identified FBPs were searched in BIOPEP [49]

Bean protein FBP identification by LC-MS;
physicochemical property evaluation

Bioactivities of identified FBPs were searched in BIOPEP [50]

Porcine products In vitro hydrolysis and bioactivity evaluation In silico hydrolysis simulation and potential bioactivity evaluation were conducted to guide
optimal enzyme selection

[51]

Wheat Peptideranker was used for FBP screening,
and opioid activity of FBPs was confirmed by
in vitro experiment

Used in silico hydrolysis simulation [52]

Notes: *: A ¼ a
N

or AE ¼ d
N

where A is the occurrence frequency of peptides in a protein, AE is the occurrence frequency of released peptides from a protein under a specific

enzyme, a is the number of peptides with bioactivity encrypted in the selected protein chain, d is the number of released peptides with bioactivity, and N is the number of

amino acid residues in the protein. DHt¼ d
N
where DHt is the theoretical degree of hydrolysis, d is the number of hydrolyzed peptide bonds, and D is the total number of peptide

bonds in a protein chain. W¼ AE

A
whereW is the relative frequency of the peptide released by given activity by selected enzymes or chemicals, A is the occurrence frequency of

peptides, and AE is the occurrence frequency of released peptides. B ¼
Pk

i¼1
ai

EC50i
N

or BE ¼
Pk

i¼1
aEi

EC50i
N

where B is the potential bioactivity of a protein, BE is the potential

bioactivity of released peptides from a protein under a specific enzyme, ai is the number of repetition of the i-th bioactive fragment in the protein sequence, aEi is the number of
repetition of the i-th bioactive peptide released from the protein sequence, EC50i is the concentration of the i-th bioactive peptide corresponding to its half-maximal activity
(mM), k is the number of different fragments with a given activity, and N is the number of amino acid residues.
Abbreviations: ACE: angiotensin-I-converting enzyme; ADMET: absorption, distribution, metabolism, excretion, and toxicity; DPP-IV: dipeptidyl peptidase IV; RuBisCO:
ribulose-1,5-bisphosphate carboxylase; UbMP: activate ubiquitin-mediated proteolysis.
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integrate this progress, leading to more robust and reliable pro-
teolytic simulation for complex protein sources. On the other hand,
it should be noticed that bioinformatics software such as PEAKS X
or Mascot, which is used for mass spectrometry (MS) data decon-
volution and interpretation, is limited by predefined settings (e.g.,
parent protein databases and enzyme specificity) and also has
difficulty in identifying small peptides, which are the majority of
the peptides in the databases [51,43,61,65,66].

3. QSAR approaches and applications in FBP virtual screening

QSAR is a computational modeling method to interlink the
structural characteristics and biological activity of a substance. It is
the most popular bioinformatics approach in FBP virtual screening.
QSAR models can be categorized as classification models or
regression models based on their modeling methods (Tables 3 and
4). A regression model can predict specific bioactivity values (e.g.,
IC50), while a classification model can only predict relative bioac-
tivity among a group of samples (e.g., bioactivity potential) or bi-
nary classification (e.g., toxicity) [10,13,56,67]. The prerequisites for
QSARmodel development is a set of bioactive peptides with known
bioactivity, so QSAR approaches are also classified as a ligand-based
virtual screening method [68]. There are three basic steps in QSAR
modeling: collection of peptide bioactivity data; peptide repre-
sentation by different descriptors; and model development (Fig. 2).

3.1. Datasets in QSAR-driven virtual screening

As a knowledge-based method, QSAR modeling relies highly on
datasets [67]. Therefore, dataset collection is a common issue that
hinders QSAR model performance, especially for researchers
without a biochemistry background [20,67,75]. At this time, there is
no well-recognized and curated dataset for QSAR model develop-
ment (Table 1 summarizes the databases used for FBP data
7

retrieval). Some researchers directly retrieve the datasets used in
their previous papers without any updates with the latest FBPs
[20,67,75]. For example, in the study of Zhou et al., the peptides in
the 8 datasets were published in 1986e2008 [67]. Manually col-
lecting FBP data from literature is laborious but effective for dataset
enlargement and model performance improvement [5,26]. Some
efforts have been made to develop FBP databases. BIOPEP has an
option for authors to upload their latest bioactivity data with
published references; it then manually checks the data [25].
However, there is still a long way to go.

In addition, the size of current FBP datasets is quite small. All the
datasets used in the studies in Table 4 had fewer than 250 entries,
although the dataset size slowly increased [5,26,27,69]. In order to
gain more peptides for QSAR model development, some re-
searchers have synthesized many pure peptides using chemical
approaches, which enlarged the FBP databases and contributed to
QSAR model performance improvement [26,27,69,70].

3.2. Peptide representation in QSAR-driven virtual screening

Peptide representation is an essential step in QSAR model
development. Basically, there is a need to numerically represent
peptide characteristics by different molecular descriptors. Peptide
representation can be classified into different types based on the
type of descriptors used (e.g., chemical descriptors), descriptor
properties (e.g., 1D-, 2D-, and 3D-QSAR), or structure separation
(i.e., local descriptors and global descriptors) (Fig. 3). Below, we
further discuss peptide representation, considering categorization
by structure separation because it can easily differentiate among
FBP studies (Table 4), as well as the latest development in natural
language processing (NLP)-based peptide representation [14,79].

3.2.1. Local descriptor-based peptide representation
In peptide representation, local descriptors are also known as



Table 3
Summary of QSAR prediction webservers.

Common bioactivity prediction

Bioactivity Web server Website Model development Model performance Release
time

18 different
properties (20
datasets)*

UniDL4BioPep https://
nepc2pvmzy.us-
east-1.
awsapprunner.com/

A protein language model based CNN model Better performances than the respective state-
of-the-art models for 15 out of 20 different
bioactivity dataset prediction tasks)

2023

Antioxidant AnOxPePred http://services.
bioinformatics.dtu.
dk/service.php?
AnOxPePred-1.0

CNN model ACC is around 80%
MCC is around 0.7

2020

Antioxidant IDAod http://antioxidant.
weka.cc

Neural network for feature extraction; t-SNE for
feature reduction; binary SVM classifier model

ACC ¼ 97.05%
MCC ¼ 0.7409

2018

ACE inhibition pLM4ACE https://sqzujiduce.
us-east-1.
awsapprunner.com/

A protein language model based CNN model;
confident learning theory for data cleaning

BACC ¼ 88.3%
MCC ¼ 0.77

2023

ACE inhibition MAT-AHT http://hazralab.iitr.
ac.in/ahpp/index.
php

No extra feature selection method; regression
decision tree model

r ¼ 0.9513 2021

ACE inhibition PAAP http://codes.bio/
paap/

No extra feature selection method; random forest
binary classifier

ACC ¼ 84.73% 2018

ACE inhibition AHTpin http://crdd.osdd.
net/raghava/ahtpin/
di_mat.php

No extra feature selection method; SVM regression
model for di/tripeptides; SVM classification

r ¼ 0.701 and 0.543 for dipeptides and
tripeptides, respectively; ACC¼ 76.67%, 72.04%,
77.39, 82.61%, and 84.21% for tetrapeptide,
pentapeptide, hexapeptides, medium peptides
(7e13 residues), and large peptides (above 13
residues), respectively

2015

DPPIV inhibition StackDPPIV http://pmlabstack.
pythonanywhere.
com/StackDPPIV

GA-SAR for feature selection; random forest binary
classifier

ACC ¼ 89.1%
MCC ¼ 0.784
AUC ¼ 96.1%

2022

DPPIV inhibition iDPPIV-SCM http://camt.
pythonanywhere.
com/iDPPIV-SCM

No extra feature selection method; Scoring card
method for binary classifier

ACC ¼ 69.7%
MCC ¼ 0.594
AUC ¼ 84.7

2020

Antimicrobial ClassAMP http://www.
bicnirrh.res.in/
classamp/

SVM or RF classifier MCC ¼ 0.92, 0.83, and 0.96 for antibacterial,
antifungal, and antiviral peptides, respectively

2020

Antimicrobial MAT-AMP http://hazralab.iitr.
ac.in/ampgp.php

Not available Not available 2021

Antimicrobial iAMGpred http://hazralab.iitr.
ac.in/ampgp.php

SVM classifier AUC ¼ 94%
MCC ¼ 0.88

2017

Antimicrobial ADAM https://
bioinformatics.cs.
ntou.edu.tw/ADAM/
tool.html

SVM or profile hidden Markov models Not available 2015

Anticancer xDeep-AcPEP https://app.cbbio.
online/acpep/home

CNN model r ¼ 0.8073, 0.8322, 0.7289, 0.8179, 0.8370, and
0.8285 for breast, cervix, skin, prostate, lung,
and colon cancer, respectively

2021

Anticancer MLACP 2.0 https://balalab-
skku.org/mlacp2

CNN model ACC ¼ 76.5%
MCC ¼ 0.513
AUC ¼ 0.773

2022

Anticancer AntiCP 2.0 https://webs.iiitd.
edu.in/raghava/
anticp2/index.html

Extra trees classifier ACC ¼ 92.1%
MCC ¼ 0.84

2021

Anti-inflammatory InflamNat http://www.
inflamnat.com/

Multi-tokenization transformer model AUC ¼ 84.2% 2022

Anti-inflammatory PreAIP http://kurata14.bio.
kyutech.ac.jp/
PreAIP/

RF model ACC ¼ 77%
MCC ¼ 0.512
AUC ¼ 84%

2019

Anti-angiogenic AntiAngioPred http://webs.iiitd.
edu.in/raghava/
antiangiopred/

SVM classifier ACC ¼ 80.9%
MCC ¼ 0.62

2015

Hemolytic HAPPENN https://research.
timmons.eu/
happenn

Neural network ACC ¼ 85.7%
MCC ¼ 0.71

2020

Hemolytic HemoPred http://codes.bio/
hemopred/

RF model ACC ¼ 95%
MCC ¼ 0.91

2017

Hemolytic HemoPI http://crdd.osdd.
net/raghava/
hemopi/

SVM model ACC ¼ 96.4% or 75.7%
MCC ¼ 0.93 or 0.51 for two different datasets

2016

Anti-tubercular AtbPpred http://thegleelab.
org/AtbPpred

Neural network model AAC ¼ 87.3% 2019

Immunomodulatory NetMHCpan 4.0 https://services.
healthtech.dtu.dk/
service.php?
NetMHCpan-4.0

Neural network model r ¼ 0.790
AUC ¼ 93.4%

2020
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Table 3 (continued )

Common bioactivity prediction

Additional property prediction
Function Web server Website Model development Model performance Release

time
Whether a is

bioactive
PeptideRanker http://distilldeep.

ucd.ie/
PeptideRanker/

Neural network model With 0.8 as threshold,
FPR ¼ 0.02 and 0.06, MCC ¼ 0.54 and 0.74, and
AUC ¼ 0.04 and 0.932 for short peptides (4e20
residues) and long peptides (>20 residues),
respectively

2012

Peptide intestinal
stability

HLP http://crdd.osdd.
net/raghava/hlp/

SVM regression model r ¼ 0.70 and 0.98 for two different datasets 2014

Peptide penetrate
cell

CPPpred http://distilldeep.
ucd.ie/CPPpred/

Neural network model MCC ¼ 0.69
FPR ¼ 2.13

2013

Plasma stability PlifePred http://webs.iiitd.
edu.in//raghava/
plifepred/

SVM regression model r ¼ 0.743 2018

Metabolism
prediction

BioTransformer
3.0

https://
biotransformer.ca/

A knowledge-based prediction tool and a set of
random forest and ensemble models

Jaccard score range from 0.380 to 0.452 for 9
metabolic transformations

2022

ADMET evaluation ADMETlab 2.0 https://admetmesh.
scbdd.com/

40 classification models and 13 regression models
were built on MGA framework

For the regressionmodels, R2 ranges from 0.678
to 0.957, and average R2 is 0.783; AUC ranges
from 0.707 to 0.983, and average AUC is 0.863

2021

ADME evaluation SwissADME http://www.
swissadme.ch/

19 classification models and 15 regression models
were built on existing models

Best model R2 ¼ 0.75 for water solubility;
R2 ¼ 0.67 for skin permeability coefficient; ACC
ranges from 0.78 to 90.8 for pharmacokinetic
parameters, and average ACC is 80.5%; r ¼ 0.91
or 0.62 (depending on datasets)

2017

Protein allergenicity AllerCatPro https://allercatpro.
bii.a-star.edu.sg

Combination of protein clustering program (cd-hit)
and BLAST search tool; homology detection and
molecular dynamics simulation for 3D structure
correction and comparison

ACC ¼ 84%
MCC ¼ 0.727

2022

Peptide
allergenicity

SORTALLER http://sortaller.
gzhmc.edu.cn/

A substantially optimized SVM binary classification
model

AAC ¼ 98.5%
MCC ¼ 0.97

2012

Chemical
allergenicity

ChAlPred https://webs.iiitd.
edu.in/raghava/
chalpred/

Pearson correlation and support vector classifier for
feature selection; random forest for classifier

AAC ¼ 83.39%
AUC ¼ 0.93

2021

Chemical
cytochrome
activity

SuperCYPsPred http://insilico-cyp.
charite.de/
SuperCYPsPred/

Five RF classifiers for CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4

All the ACC >93%
All the AUC >0.93

2020

Peptide toxicity ProTox-II http://tox.charite.
de/protox_II

31 models were developed by RF, ensembles of SVM
and RF, or BernoullieNaive Bayes models for
different toxicities

Average ACC ¼ 85%
Average AUC ¼ 0.83

2018

Peptide toxicity ToxinPred https://webs.iiitd.
edu.in/raghava/
toxinpred/index.
html

SVM model ACC ¼ 96.01%
MCC ¼ 0.89

2013

Taste VirtualTaste http://virtualtaste.
charite.de/
VirtualTaste/

RF classifier ACC ¼ 90%
AUC ¼ 98%

2021

Bitterness BERT4Bitter http://pmlab.
pythonanywhere.
com/BERT4Bitter

A BERT-based binary classification model 92.2% accuracy in test dataset; the BERT-model
outperformed models built on CNN and LSTM
neural network

2021

Bitterness iBitter-SCM http://camt.
pythonanywhere.
com/iBitter-SCM

A SCM-based binary predictor AAC ¼ 84.38% 2020

Umami iUmami-SCM http://camt.
pythonanywhere.
com/iUmami-SCM

A SCM-based binary predictor ACC ¼ 86.5%
MCC ¼ 0.679

2020

Abbreviation: ACC: accuracy; ADMET: absorption, distribution, metabolism, excretion, and toxicity; AUC: area under the curve of a receiver operating characteristic curve
plots; BERT: bidirectional encoder representation from transformer, BLAST: Basic Local Alignment Search Tool; CNN: convolutional neural network; FPR: false positive rate;
GA-SAR: genetic algorithm based on self-assessment report; LSTM: long short-term memory; MCC: Matthews correlation coefficient; MGA: multi-task graph attention; r:
Pearson correlation coefficient; R2: determination of coefficient; RF: random forest; SCM: scoring card method; SVM: support vector machine; t-SNE: t-distributed stochastic
neighbor embedding.
*: The 18 bioactivities include angiotensin-converting enzyme (ACE) inhibitory activity (anti-hypertension), dipeptidyl peptidase IV (DPPIV) inhibitory activity (antidiabetes),
bitter, umami, antimicrobial activity, antimalarial activity, quorum-sensing (QS) activity, anticancer activity, anti-methicillin-resistant S. aureus (MRSA) strains activity, tumor
T cell antigens (TTCA), blood-brain barrier, antiparasitic activity, neuropeptide, antibacterial activity, antifungal activity, antiviral activity, toxicity and antioxidant activity.
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amino acid descriptors (AADs) where peptide residues are sepa-
rately characterized by their own AADs and assembled depending
on the peptide sequence [69]. For example, 5-z scale is a kind of
AAD with 5 parameters for amino acids, and then a peptide with n
residues will be represented as a vector of 5n components where
the first 5 elements correspond to the 5 parameters of the first
amino acid residue in the 5-z scale (Fig. 2). This approach is the
most popular peptide representation approach among FBP studies
9

[26,53,69,72e74,76]. AADs are derived from the basic properties of
amino acids, including physicochemical properties, topological
properties, 3D structural information and others, using feature
extraction methods such as principal component analysis (PCA)
[67]. To date, there are up to 80 proposed AADs, and most of them
were extracted by PCA for different properties or a mixture of
different properties [67]. For instance, the 5-z scale is a physico-
chemical descriptor extracted from 26 original physicochemical
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Table 4
Selected virtual screening strategies using quantitative structure-activity relationship (QSAR) modeling.

Local descriptor-based QSAR model application

Bioactivity Dataset size Amino acid descriptors (AADs) Model Performance Additional comments* Reference
Antioxidant

activity
(ABTS
assay)

133 tripeptides 566 amino acid properties were
selected by 6 ML methods as AADs
or directly used as AADs

14 ML
regression
models

R2
P ¼ 0.847 (best model by

RFR for feature selection
and XGB for regression
model)

QAY, PHC, YPQ, VYV, GPE, and YSQ;
performance comparison between 98
models

[5]

Antioxidant
activity
(DPPH
assay)

69 peptides SVRG and SVEEVA were screened
by SWR and only for the
representation of first five residues
at terminus

PLSR R2
P ¼ 0.5536 by SVRG

R2
P ¼ 07173 for SVEEVA

AGWACLVG, IDLAY, YPLDL, IPIGP, and
EAFDPLG

[59]

Antioxidant
activity
(FTC and
FRAP
assays)

214 tripeptides in FTC
dataset and 173
tripeptides in FRAP
dataset

16 AADs were integrated by BOSS PLSR R2
CV ¼ 0.7471 for FTC

dataset and R2
CV ¼ 0.6088

for FRAP dataset

MPA for outlier detection; performance
comparison between the descriptor selector
by BOSS and 16 basic AADs

[26]

Antioxidant
activity

91 tripeptides 195 physiochemical properties of
amino acids were screened by
SWR

PLSR,
SVMR,
RFR, andM
LR

R2
CV ¼ 0.706 for PLSR

R2
CV ¼ 0.764 for SVMR

R2
CV ¼ 0.728 for RFR

R2
CV ¼ 0.798 for MLR

GHG, LVG, GHT, GHG, GHP, KHP, GVR, ECG,
GVW, GKW, GHW, QVW, KVW, NKW, NHW,
QHW, KHW, PYW, and YHW

[69]

Antioxidant
activity
(ORAC and
ABTS
assays)

48 dipeptides 3-z scale, 5-z scale, DPPS, and ISA-
ECI

PLSR All the R2
CV were below 0.5 The bioactivity of peptides used in this

studies were determined in the same
laboratory

[70]

ACE inhibitory
activity

58 dipeptides 80 different AADs SVMR and
PLSR

R2
P varied from 0.6 to 0.82

for SVMR and from 0.48 to
0.7 for PLSR

N/A [67]

ACE inhibitory
activity

84 dipeptides, 169
tripeptides, and 15
tetrapeptides

SVHEHS screened by OSC SVMR R2
CV in four models were

all above 0.995
ACC was employed to unify the feature
dimension among different peptide length
datasets

[71]

ACE inhibitory
activity

141 dipeptides 16 AADs were integrated by BOSS PLSR R2
CV ¼ 0.7151 MPA for outlier detection; performance

comparison between the descriptor selector
by BOSS and 16 basic AADs

[72]

ACE inhibitory
activity

166 dipeptides and
141 tripeptides

5-z scale PLSR R2
CV ¼ 0.756 for dipeptides

R2
CV¼ 0.445 for tripeptides

YW and LRY [53]

DPP IV
inhibitory
activity

30 peptides 5-z scale and v-scale used for the
representation of N- and C-
terminus resides

PLSR R 2
CV ¼ 0.775 for 5-z scale

R 2
CV ¼ 0.754 for v-scale

FP, HP, RP, VP, IPM, LPP, IPPL, IPSK, VPGEIVE,
YPFPGP, LPQNIPPLT, IPPLTQT, TPVVVPP,
YPVEPF, LPLPLL, QPHQPLPPT, QPLPPT, and
LPVPQ

[73]

Antimicrobial
activity

196 dodecapeptides 20 different AADs PLSR R 2
CV ¼ 0.633 for FASGAI as

AADs
AADs were screened by GA-PLSR before
model development

[74]

Bitterness 48 dipeptides 553 physicochemical properties
selected by PCA

MLR R2
P ¼ 0.907 Performance comparison with 7 AAD-based

models
[75]

Bitterness 48 dipeptides, 52
tripeptides, and 23
tetrapeptides

16 AADs were integrated by BOSS PLSR R2
CV ¼ 0.941 for dipeptides

R2
CV¼ 0.742 for tripeptides

R2
CV ¼ 0.956 for

tetrapeptides

MPA for outlier detection; performance
comparison between the descriptor selector
by BOSS and 16 basic AADs

[76]

Global descriptor-based QSAR (3D-QSAR) model application
Bioactivity Dataset size Molecular alignment & MIF

calculation
Model Performance Additional comments* Reference

ACE inhibitory
activity

53 di/tripeptides Docking-based alignment (Suflex-
Dock); CoMFA and CoMSIA for MIF
calculation

PLSR R2
CV ¼ 0.773 for CoMFA

R2
P ¼ 0.664 for CoMSIA

GEF, VEF, VRF, and VKF were synthesized for
validation

[77]

ACE inhibitory
activity

40 dipeptides, 32
tripeptides, and 41
tetra/penta/
hexapeptides

Template ligand-based alignment;
CoMFA and CoMSIA for MIF
calculation

PLSR R2
CV ¼ 0.862 for dipeptides

(CoMSIA)
R2

CV¼ 0.848 for tripeptides
(CoMFA)
R2

CV ¼ 0.656 for longer
peptides (CoMFA)

N/A [78]

Antimicrobial
activity

24 nonapeptides R2
CV ¼ 0.601 All peptides are rich in R, P, and F residues [78]

Bitterness 21 peptides R2
CV ¼ 0.530 All peptides are rich in W residue [78]

Notes: *: Peptides were synthesized by chemical approach for validation experiments; N/A: not available.
Abbreviation: AADs: amino acid descriptors; ABTS: 2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical; ACC: auto and cross auto covariances; BOSS: bootstrapping
soft shrinkage; CoMFA: comparative molecular field analysis; CoMSIA: comparative molecular similarity indices analysis; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; FTC: ferric
thiocyanate; FRAP: ferric ion reducing antioxidant power; GA: genetic algorithm; MPA: model population analysis; MIF: molecular interaction field; ML: machine learning;
MLR: multiple linear regression; OSC: orthogonal signal correction; PCA: principal component analysis; PLSR: partial least squares regression; RF: random forest regression;
R2

P: determination of coefficient in test dataset; R2
CV: determination of coefficient of cross-validation; SVMR: support vector machine regression; SVRG: vector of radial

distribution function descriptors and geometrical descriptors; SVEEVA: vector of principal component score for electronic eigenvalue descriptors; SWR: stepwise regression;
XGB: extreme gradient boost.
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Fig. 3. Overall workflow of peptide representation. Note: Local descriptor peptide representation: Vi is the amino acid descriptor of the ith residue in the peptide sequence, and it is
a one-by-k vector; k is the feature dimension of AAD; n is the length of the peptides; the total dimension of one peptide is k*n. Global descriptor peptide representation: Vi is the
property of the whole peptide; n is the number of the properties used for peptide encoding. NLP -based peptide representation: the biological NLP approach uses the pre-trained
transformer (e.g., ProtTrans) from protein sequences as the dataset for the peptide encoding; the chemical NLP approach uses the pre-trained transformer (e.g., Chemformer) from
molecules as the dataset for the peptide encoding. Before the transformation, peptide need to be converted into chemicals strings (e.g., SMILE format).
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properties, and the factor analysis scale of generalized amino acid
information (FASGAI) is a mixture descriptor extracted from 335
properties including hydrophobicity, alpha and turn propensities,
bulk properties, compositional characteristics, local flexibility, and
electronic properties [53,70,74]. Combining more AADs can provide
more information and better represent peptides. In light of this, the
bootstrapping soft shrinkage (BOSS) method was employed to
integrate 16 AADs for antioxidant, ACE inhibitory, and bitter pep-
tide representation, and the performance of all QSAR models with
integrated descriptors achieved better performance [26,72,76].

Meanwhile, the availability of the original properties for AAD
extraction has been gradually improved with the development of
11
amino acid property databases (e.g., AAIndex). Therefore, some
researchers turned to extracting AADs from the original dataset
[5,75,69]. For example, our lab conducted a comprehensive study
[5] where 566 amino acid properties including different physico-
chemical and biological properties were screened by 6 feature se-
lection methods and 14 machine learning methods for regression
model development. The best tripeptide antioxidant activity
regression model was obtained by a combination of new AADs
extracted from original properties of amino acids by random forest
regression and an eXtreme gradient boosting (XGBoost) regression
model. This model performed better than the antioxidant activity
prediction model that relies only on physiochemical properties and
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linear regression methods [5,69]. The 566 amino acid properties
and the 16 popular AADs compared in the study of Du, Wang et al.,
and Deng et al., are included in Supplementary 1 from the previous
study [5].

The AAD-based QSAR approach does have an obvious disad-
vantage. Since descriptors are assigned to each residue, peptides
with different lengths will have different feature dimensions after
characterization, which results in dataset prerequisites (i.e., pep-
tides with the same length). This limits the utilization of the latest
data reported for peptides with different lengths and hinders
building a universal QSAR model for a specific bioactivity irre-
spective of the peptide length [53,70,76,71]. Some researchers
proposedmodified AAD-based QSAR approaches that only consider
residues close to the terminus because some studies showed that
these residues had greater influence on bioactivity, and thus pep-
tides with different lengths can be unified to the same feature
dimension (Nongonierma & FitzGerald, 2016; Zhu et al., 2022).
Peptides with different lengths could then be combined as a larger
dataset for model development, although some peptides would
suffer from property information loss. The other disadvantage is
that the characterization does not consider the peptide as a whole
and so does not consider the synergetic effects between different
residues.

The information loss mentioned above in AAD-based QSAR
modeling was shown in the study of Zhou et al., where support
vector machine regression (SVMR) and partial least squares
regression (PLSR) were used to build QSAR models based on 80
AADs from 8 different bioactivity datasets [67]. Specifically, two
random descriptors generated by a standard normal distribution
and a uniform distribution were also used in model development
and did not result in a significantly worse performance [67], which
meant the prediction power was mainly derived from themodeling
method. Even though the authors stated that their AAD-based
modeling had almost reached theoretical limits, it should be
noted that the datasets used in the study were very small and out-
of-date, and accordingly, the study might not reflect the power of
AADs very well.

There is an alternative way to overcome the peptide length
limitation inspired by one-hot encoding and such attempts have
been used to build a cutting-edge bioactivity predictionweb server,
AnOxPePred (Table 3). Since most reported antioxidant peptides in
available antioxidant peptide dataset are composed of the 20 pro-
teinogenic amino acids, a vector with 20 elements (nineteen ele-
ments are 0 and one element is 1) was used to represent any amino
acids by the position of 1 in the vector. A 20 � 30 matrix was
created for peptide representation (ranging from 2 to 30 residues).
A dipeptide was represented by a 20 � 30 matrix, but only the first
and the second rowwere used.With a large dataset (1404 peptides)
and the boost of a convolutional neural network (CNN) for classi-
fication model development, this peptide representation approach
achieved great performance (accuracy around 80%) [80]. It should
be noted that this approach is only feasible when a large dataset is
available, and it is not suitable for regression model development.

3.2.2. Global descriptor-based peptide representation
Global descriptors characterize peptides as a whole, which can

overcome the peptide length limitation mentioned above and also
take the whole peptide structure into consideration for represen-
tative vector generation [14]. Theoretically, global descriptors have
more advantages than local descriptors.

Molecular descriptors for general chemicals might also be a
great alternative for AADs. Descriptor calculation software for
chemicals has been well developed (e.g., PaDEL, Dragon, MOE, etc.)
[21,28,81,82]. In the study of Li et al., the QSAR model achieved
amazing accuracy for IC50 (the half maximal inhibitory
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concentration) of DPP IV inhibitory activity among 39 cysteine-
containing dipeptides by using a combination of PaDEL for
descriptor calculation, a genetic algorithm for feature selection, and
multiple linear regression for model development [21]. A similar
attempt was also seen in the study of Wang et al., where 728
peptides with different lengths were collected [28].

Among FBP studies, three-dimensional (3D) QSAR is the most
popular approach with global descriptor-based characterization
because it reasonably represents 3D characteristics [14,74,82]. In
FBP studies, 3D QSAR mostly refers to Comparative Molecular
Moment Analysis (CoMFA) and Comparative Molecular Similarity
Indices Analysis (CoMSIA), which have some additional steps
compared to AAD-based QSAR model development (Fig. 2). There
are also descriptors for 3D QSAR without the need for molecular
superposition, but herewe specifically focus on CoMFA and CoMSIA
analysis. The first step of these analyses is to reconstruct the 3D
structure of the peptides and then conduct energy minimization by
calculation under force fields. Some software and web servers for
structure construction are provided in Table 1. Energyminimization
is essential because it makes structure conformation much more
reasonable and representative and is generally achieved by search
strategies: the steepest gradient descent method (fast) and conju-
gate gradient method (slow) [9,10,78]. The next step, structural
alignment, is the most critical step in developing a reliable 3D-
QSAR model [10]. There are, generally speaking, three different
alignment strategies: template ligand-based alignment, docking-
based (receptor-based) alignment, and scaffold-based alignment
(Table 4). The template ligand-based alignment aligns all the pep-
tides in the dataset to the most potent peptides. The docking-based
alignment retrieves peptide conformation from molecular docking
results and then aligns peptides to the most potent peptides with
the consideration of orientation, while scaffold-based alignment
does not consider the orientation [10,82,83]. The last step is to
calculate the molecular interaction field based on the 3D structure.
Based on results from FBP studies (Table 4), it is difficult to judge
which method is better: CoMFA analysis or CoMSIA analysis. Some
researchers believe CoMSIA was often more robust because it
contains additional information from hydrogen bonding groups
and hydrophobic regions [14,82].

CoMFA and CoMSIA analyses have all the advantages of global
descriptors over local descriptors [9,14]. Furthermore, 3D-QSAR can
be easily combined with molecular docking to explain the peptide
ligand-receptor interaction mechanism, because the descriptors
(e.g., steric, electrostatic, hydrophobic, hydrogen bond donor, and
hydrogen bond acceptor fields in CoMSIA) are the interaction forces
in molecular docking and can be visualized as a contour map for the
contribution distribution of different fields [10]. However, these
approaches also face some challenges. First, peptide molecules are
highly flexible, and energy minimization usually only samples a
single energy minimum near the initial structure. If there are
multiple biologically relevant structures, some may be missed. In
addition, compared to AADs, global descriptors cannot reflect how
an amino acid residue at a certain site affects bioactivity, so they
cannot directly aid rational design at the residue level [5,14,82].

3.2.3. Natural language processing (NLP)-based peptide
representation

Natural language processing (NLP) has been applied for encod-
ing peptides by building pre-trained models for feature extraction
from peptide sequences. One attempt (BERT4Bitter in Tables 1 and
3) was conducted in 2021 to update the state-of-the-art classifi-
cation model for bitter peptide prediction, in which three NLP-
based peptide encoding methods were employed for peptide rep-
resentation [84]. A cutting-edge modeling architecture (bidirec-
tional encoder representations from transformers (BERT)) is
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emerging recently for protein sequence encoding, which can
transform the words in a sentence into a numerical vector with the
consideration of the sentence context and has exhibited great
performance in various NLP tasks. Correspondingly, each amino
acid residue in a protein sequence (sentence) can be considered as a
word in the “sentence” [85,86]. Such models are based on the
comprehension of the available protein sequences through building
self-supervised learning models. This approach relies on more than
200 million protein sequences and theoretically has a better ca-
pacity to internalize the information encrypted in protein se-
quences [85,87]. Several BERT-based protein language models
(pLMs) (e.g., ESM- 2, ProteinBERT, ProtTrans) have been released in
the past two years and achieved great performance in downstream
classification tasks, such as subcellular location, structure predic-
tion, function prediction, etc. [85,87,88]. Very recently, our lab has
developed a universal model architecture (UniDL4BioPep) by
employing the latest protein language model ESM-2 with a CNN
model. It was tested on 20 bioactivity dataset prediction tasks and
achieved better performance than the respective state-of-the-art
models in 15 out of 20 datasets [89]. Meanwhile, the model
development for thee bioactive peptide datasets based Uni-
DL4BioPep does not require feature selection or hyperparameter
tuning. This successful attempt supports the feasibility and supe-
riority of pLM-based peptide representation. The great potential of
pLMs in peptide representation for model performance improve-
ment is expected to gain more attention in the future, though the
model method lacks explainability.

Besides, recent progress in drug discovery might also help
advance global descriptor-based characterization. Chemicals are
often encoded by the simplified molecular input line entry system
(SMILES), which is a string of letters, numbers, and symbols. These
strings can in turn be subjected to NLP, which can categorize strings
and build models to screen other chemicals [90]. The SMILES
format provides sufficient information to construct the molecules
in atomic detail, and, therefore, it can be thought to represent the
global structural information of the chemical. The latest trans-
former, Chemformer released in 2022 was pretrained through 100
million SMILES strings and can be used to encode the SMILES string
of the peptide sequences. Unlike typical drug-like molecules, which
are often smaller and contain mostly rigid groups, peptides with
more than a few amino acids are relatively flexible and can have
many accessible conformations. Thus, its practical application in
peptides may be limited [90]. More information may need to be
encoded in descriptors or strings to describe peptide conforma-
tional ensembles, especially for long peptides that can form sec-
ondary structures (>4 residues) [90e93].

3.3. Model development

Model development is the process to connect representative
vectors of peptides and their bioactivity/properties. Recent prog-
ress in machine learning has benefited from numerous biochem-
istry studies that have increased model robustness and accuracy
[5,14,94,95]. Generally speaking, model development includes
three steps: feature/variable selection, model building, and per-
formance evaluation. Feature/variable selection as well as model
building and performance evaluation have no specific pre-
requisites. A previous review from our lab reviewed in detail pop-
ular feature selection methods and model building and
performance evaluation methods to compare their advantages and
disadvantages [95]. The review here only focuses on the models
used in Table 4 (recent QSAR studies on FBPs) and Table 3 (web
servers).

All the studies in Table 4 created a regressionmodel, andmost of
them adopted AADs or global descriptors plus PLSR for model
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building. Because AADs have gone through a round of feature se-
lection from original properties, it is not necessary to conduct one
more feature selection before model building [53,67,73]. In some
cases, researchers integrated different AADs to have as much in-
formation as possible for model building. In those cases, feature
selection would be necessary since there would be a lot of redun-
dant features among different descriptors, which will undermine
the model [26,72,76]. For researchers who characterized peptides
from the individual properties of amino acids, feature selection
would be indispensable to reduce feature dimension and remove
redundant features [5,69]. For global descriptors, the criteria for
whether to adopt feature selection were the same for AAD
descriptors.

As for model building methods, traditional machine learning
methods are the mainstream because they work well with limited
dataset sizes compared to emerging deep learning approaches.
Linear regression methods (e.g., PLSR) can calculate feature
importance by variable importance in projection (VIP) values and
illustrate which peptide residues or whole peptide properties are
more influential [9,28,95,96]. Non-linear regression methods
generally perform better than linear regression, but some of them
require complex model processes, and sometimes it is difficult to
figure out the contribution of each feature to the predicted bioac-
tivity because of their poor explainability (e.g., artificial neural
network) [95]. The regression models in Table 4 can give the spe-
cific bioactivity values of a peptide, which equips the model with
more potential for precise screening. In terms of model perfor-
mance parameters in antioxidant activity prediction, an improved
regression model among available QSAR regression models was
achieved by our lab, where the RP

2 was 0.847 using a non-linear
random forest regression (RFR) model [5].

Table 3 collects the latest QSAR web servers developed by bio-
informatics researchers. Their feature selection and modeling
methods are diverse, and some of them adopt advanced machine
learning methods (e.g., CNN) [80,97,98]. Unlike the regression
models in Table 4, these QSAR web servers (except AHTpin for di-
peptides and tripeptides) are classification models, whose re-
sponses (Y) in the model development are labels (e.g., active or not
active) instead of the specific activity (e.g., IC50 ¼ 1 mM). Such
models can only predict which group an unknown peptide belongs
to (e.g., high activity (IC50 < 10 mM), medium activity
(10 mM < IC50 < 100 mM), low activity (100 mM < IC50 < 1000 mM), or
non-activity (IC50 > 1000 mM) and, therefore, are much more
suitable for rough screening. In addition, these classification
models are all based on larger datasets by unifying the feature di-
mensions of different peptide lengths or by creating new global
descriptors [80,99]. For example, PeptideRanker is the most pop-
ular binary classification web server among FBP studies. Developed
in 2012, it used 1330 short peptides (4e20 amino acids) and 4731
long peptides (>20 amino acids) for its neural network classifica-
tion model. Its method of peptide representation was not clearly
explained. One thing that should be mentioned is that PeptideR-
anker's dataset for model development was composed of bioactive
peptides retrieved from peptide databases (i.e., BIOPEP, PeptideDB,
APD2, and CAMP), including peptide hormones, antimicrobial
peptides, toxin/venom peptides, antifreeze proteins, antibacterial
peptides, antibiotic peptides, and anticancer peptides [99]. It is
obvious that the number of peptides with each type of bioactivity
was not equally distributed in PeptideRanker's original dataset,
which caused bias when it was used to predict the potential for
bioactivity. Several web servers have been recently developed to
predict specific types of bioactivity and, therefore, are likely to be
more accurate when a specific type of bioactivity is of interest
(Table 3). Among recent FBP studies, only two studies (L. Wen et al.
and Sansi et al.) employed the latest immunomodulatory activity
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prediction sever NetMHCpan 4.0 (released in 2020) and antimi-
crobial bioactivity prediction server CAMPR3 (released in 2014) for
virtual screening [100e102]. This is expected to change in the
future as the collaboration between biochemistry and bioinfor-
matics studies increases.

3.4. Current status of QSAR application in FBP virtual screening

When employed in practical wet chemistry studies to screen
potentially highly bioactive peptides, QSAR models incur a lower
cost than traditional methods. The latest QSAR applications in FBP
studies are summarized in Table 4, and advanced QSARweb servers
are reviewed in Table 3.

There is usually a time lag between the release of advanced
QSAR models in the bioinformatics field and their wide application
to biochemistry studies [41,43,99]. As shown in Table 1, many
database-driven FBP studies adopted the PeptideRanker tool to
evaluate the possibility of bioactivity for previously unreported
peptides generated by in silico proteolytic simulation. Peptides
predicted to have a high probability of bioactivity were then syn-
thesized and tested by in vitro or in vivo experiments. Compared to
blind experimental searches, these approaches can accelerate FBP
exploration, but the nonspecificity for general bioactivity predic-
tion (e.g., PeptideRanker in Section 3.3) also to some extent hinders
their efficiency [24,29,35,36,41,43,100,44,52].

Some researchers with food science backgrounds have partici-
pated in QSAR model development and applied the developed
models in FBP screening studies. For example, a multi-bioactive
tripeptide, IRW, was found to have antihypertensive, anti-
inflammatory, and antioxidant properties in both in vitro and
in vivo studies [103e105]. The initial finding of this valuable tri-
peptide was based on the AAD-based ACE inhibitory activity pre-
diction QSAR model for tripeptides developed in 2006 [106]. Four
years later, the model was further applied to ACE inhibitory pre-
diction of 76 theoretical peptides released from egg proteins, and
IRW was successfully screened because of its lowest IC50 value
[16,106]. Another example involves an AAD-based model for pre-
dicting DPP IV inhibitory activity developed in 2016 by Non-
gonierma& FitzGeral. It is used for FBPs liberated frommilk protein
under the hydrolysis of enzymes in the intestinal tract. With the
additional in vitro validation for the synthesized peptides, some
high-activity DPP IV inhibitory FBPs (e.g., IPM and LPVPQ) were
identified [73]. In 2018, a study based on the model was conducted
to predict the theoretically generated peptides from camel milk
proteins, and the predicted high-activity peptides were synthesized
to validate the results of LC-MS/MS from the experimental protein
hydrolysates [61]. Bothmodels successfully obtained some valuable
FBPs using their QSAR models, but it should be noted that both
models used the determination of the coefficient in cross-
validation of the final performance evaluation, which strictly
speaking is not objective in model development
[9,21,73,76,78,96,106,107]. Most biochemistry researchers tend to
use wet chemistry experiments as an additional validation
approach, which is a better way to demonstrate a model's value in
predicting high activity peptides. However, synthesizing peptides
with a large range of bioactivity (as predicted by the QSAR model)
instead of only those peptides predicted to have high activity can be
a better way to demonstrate the overall performance of the model
[5,69]. There is no best solution given the cost of synthesis, so the
best way is to choose peptide synthesis based on the practical
needs for high activity FBPs or FBPs with a specific bioactivity.

For linear and tree-based regression methods (e.g., PLSR, mul-
tiple linear regression (MLR), random forest regression, and
XGBoost), the feature importance used in peptide representation
for model development is available and can be used to reveal
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deeper structure-activity relationships [5,69]. In the study of Fu
et al., AADs (5z-scale) were used to build PLSR models for ACE
inhibitory activity, and the results revealed that the hydrophobicity
and side chain bulk of residues at the C-terminus contributed more
to the bioactivity for dipeptides, while for tripeptides, the hydro-
phobicity and electronic properties of residues at C-terminus were
most important [53]. Another study selected features for peptide
representation from 195 physicochemical properties, which resul-
ted in a better explainability [69]. In the 3D QSAR study of Vukic
et al., the favorable effects of steric interactions and electronega-
tivity at the C-terminus in ACE inhibitory activity were highlighted
by the CoMFA method [9]. Sometimes, it is difficult to achieve such
great explainability when the features used for peptide represen-
tation are complex intrinsically. In our lab, 566 physicochemical
properties and biochemical properties were included for feature
selection, and the features retained in the final list for model
development (such as “optimized propensity to form a reverse
turn”) were difficult to understand intuitively and do not provide
an obvious mechanism for the bioactivity [5]. The same dilemma
also exists in AAD-based characterization and global descriptor-
based QSAR modeling. For example, the 5 features in the T-scale
were extracted from 67 structural and topological variables by PCA,
but no information was provided to explain each feature. For the
QSAR model developed based on the T-scale, it would be very
difficult to track backwhich properties of the peptides contribute to
the bioactivity [108].

3.5. Application of QSAR models in evaluating other properties of
FBPs

There is a long way from FBPs to commercial products (e.g.,
functional foods, nutraceuticals, or pharmaceuticals). It is not wise
to synthesize all the FBPs predicted to have high activity for in vitro
or in vivo experiments after a single round of in silico rough and
refined screening. This is because some of the FBPs might not meet
the basic requirements for commercial products [42]. The most
common strategy is to conduct a second round of filtration for all
the theoretical FBPs based on commercial feasibility (e.g., easy to
synthesize, allergenicity, toxicity) before wet chemistry validation
[21,42]. Then, the final candidates would be limited to peptides that
have a high potential for both the desired bioactivity and
economical commercial production. Important properties for
commercial product development based on FBPs include bio-
accessibility, bioavailability, metabolism, toxicity, allergenicity,
excretion, bitterness, etc. [2,7,24,109,110].

Evaluation of some of these properties has been achieved by
QSARmodels using large datasets and has been established as user-
friendly web servers [111,112]. In Table 3, the latest web servers for
the final round of screening, with their model development
methods and model performance in the benchmark dataset, are
summarized. These servers examine taste, cell penetration, plasma
stability, metabolism prediction, ADMET, allergenicity, toxicity, and
drug-likeness [110]. It should be noted that some of these models
were initially developed for general chemicals but can be used for
peptides since peptides are chemicals in the broad sense. Among
these web servers, ADMET evaluation, which is an integrated one-
stop evaluation for the absorption, distribution, metabolism,
excretion, and toxicity properties of peptides, is themost popular in
FBP screening [21,24,33,35,56,69,42]. Among these web servers,
SwissADME was released in 2017 and evaluates absorption, distri-
bution, metabolism, and excretion properties, which were the top
priorities in FBP studies [111]. A newly developed tool, ADMETlab
2.0, was released in 2021, which integrated prediction of more
properties. However, given its relative newness, so far few FBP
studies have adopted it [112]. The same situation is also observed
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among other latest prediction servers (e.g., those on plasma sta-
bility and bitterness).

Given the current state of FBP studies, it is still highly recom-
mended to include external evaluation in FBP screening to validate
accuracy. This additional workwill also allow researchers who have
expertise in other bioactivity studies to use the data for further
experiments.

4. Molecular docking approaches and their application in FBP
virtual screening

Molecular docking is a structure-based method for virtual
screening where the structure information of both peptide ligands
and targets are needed. This method overcomes the limitation of
bioactivity value availability in QSAR approaches [68,113]. It aims to
find the best matching binding mode between a ligand and a tar-
geted receptor using conformational sampling and a binding af-
finity scoring function [15,114]. The three-dimensional structures of
proteins and other biomacromolecules have been determined by X-
ray crystallography, NMR, and increasingly by cryo-electron mi-
croscopy. Nearly 200,000 such structures are freely available and
include pharmaceutical targets related to various common health
issues (e.g., hypertension, diabetes, aging, etc.) [115]. These struc-
tures, which include many small proteins and peptides, have also
provided training data to make prediction of peptide ligand con-
formations more readily available and accurate. Both of these fac-
tors have stimulated the application of molecular docking in FBP
discoveries [113,114].

Molecular docking can be used to visualize the interaction
mechanism between ligands and receptors at the atomic level, and
this ability makes it the most popular bioinformatics method for
elucidating the mechanism of action of FBPs [15,23,116,117]. In
addition, the scores associated with the best binding mode of li-
gands can be used for virtual screening by ranking these scores for
different ligands. However, these scores are at best a rough esti-
mation of the standard binding free energy, which is directly
related to the association (Ka) and dissociation constants (Kd), but is
not necessarily correlated with specific bioactivity values (e.g., IC50)
[15,118,119]. Molecular docking has demonstrated its great poten-
tial in drug discovery (since 1980s) and has also recently employed
for FBP virtual screening [114,120e123]. Given the availability of a
3D structure for the receptor and reasonable coordinates for the
ligand, molecular docking includes two critical parts. The first is
sampling of different locations, orientations, and conformations of
the ligand relative to the receptor. In the context of docking, each
configuration (location/orientation/conformation) is referred to as
a “pose”. The second part is assigning a “score” to each pose that
represents its thermodynamic favorability. These scores are the
quantity that the optimization algorithm of the docking program
seeks to optimize.Well-designed scoring functions can also be used
to compare the best-scoring poses of distinct ligands, enabling
virtual screening. Table 5 summarizes popular molecular docking
software and web servers with detailed information on sampling
algorithms, scoring functions, availability, flexibility, maintenance,
and more.

4.1. Conformational sampling in molecular docking

Conformational sampling (also known as conformation search)
attempts different conformations of the ligand around the whole
surface/cavities of the receptor (global docking) or at a designated
binding site (local docking) [91,113,124]. The number of accessible
conformers for peptides of more than a few amino acids is astro-
nomical; hence, it is not feasible to computationally generate all the
possible conformations for scoring. Furthermore, for each
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conformation of the ligand, many orientations and positions rela-
tive to the receptor must be considered. In addition, different
conformations of the receptor may be considered. A major differ-
ence among docking tools and protocols is which portions of the
ligand and receptor are regarded as flexible, meaning they are
subjected to the conformational sampling algorithm, and which are
treated as rigid, meaning that they retain the conformation origi-
nally provided by the user throughout the docking process. Some
docking tools, such as those intended for proteineprotein docking,
treat both the ligand and receptor as rigid and “conformational”
sampling entails only overall rotations and displacements of the
provided ligand structure [91]. Such an approach is usually un-
suitable for docking of peptides, which typically havemany internal
degrees of freedom and a diverse ensemble of thermodynamically
accessible structures. The most commonly used approach in FBP
studies is semi-flexible docking where the ligand is flexible, while
the receptor is rigid [15]. Many docking programs also support
treating chosen side chains of the receptor (typically those near the
binding site) as flexible groups. However, side chain flexibility is not
sufficient to permit sampling of distinct receptor conformations
that involve changes in protein backbone positions, such as inward-
facing and outward-facing states of transporters. Hence, in all cases
it is essential to choose an initial receptor conformation that is
relevant for the bioactivity of interest. For some applications, it may
be necessary to perform docking of a ligand over multiple distinct
conformational states of the receptor. Indeed, given the inherent
flexibility of proteins, improved performance has been found with
ensemble docking, where the ligand is docked to multiple snap-
shots of the receptor protein obtained from molecular dynamics
simulation [125].

The commonly used semi-flexible docking approach is a
compromise between computational effort and exhaustive sam-
pling of accessible conformations [92,114]. It should be noted that
more flexibility does not guarantee a significant improvement in
docking performance, especially since greater flexibility usually
comes at the cost of less exhaustive sampling. A performance
assessment by Huang demonstrated that semi-flexible docking
generated bound poses nearer to experimentally derived structures
than rigid docking, although ranking of ligands for virtual screening
showed no clear difference in performance between rigid and
flexible approaches [126]. However, the study of Huang considered
drug-like molecules, which are typically more rigid than many-
residue peptides. For peptides of more than a few amino acids, it
is likely that consideration of multiple conformations of the peptide
is necessary unless it is known to have well-defined folded
structure.

Various algorithms are used for sampling ligand and receptor
conformations with the available computational power [68]. The
algorithms can be generally divided into three categories based on
their searching strategies: systematic search, stochastic search, and
deterministic search (dynamics simulation search), and some
docking software combines different strategies into a multi-phase
approach (e.g., GLIDE, CDOCKER, and DOCK 6) [124,127e129].
Briefly, the systematic method is more time consuming than the
stochastic method (e.g., the Monte-Carlo methods or genetic al-
gorithm) because of it includes an exhaustive search of possible
rotamer states for subsets of the molecule. The computational de-
mand of deterministic search is the largest and proportional to the
dynamics simulation runtime. This approach is highly sensitive to
the initial conformation and spatial position because they can
change very slowly in dynamics simulation. Therefore, a deter-
ministic search can easily be trapped in local minima unless long
simulation times are used to cross the barriers or tempering stra-
tegies to accelerate this crossing are applied, which consume more
time [113,130]. Therefore, deterministic search is usually integrated



Table 5
Summary of molecular docking software/web servers, dynamics simulation software, free energy calculation tools, and force fields.

Molecular docking software

Name Sampling algorithm Scoring function Additional comments Successl
rates*

Availability Websites

AutoDock 4 Stochastic algorithm (Lamarckian genetic
algorithm)

Force field-based and empirical scoring function
(AD4)

The basic version uses flexible ligands and a rigid receptor, but it
also has specific modified solutions for hydrated docking, zinc
metalloprotein docking, flexible docking (flexible residues for
receptors), and multiple ligand docking. AutoDock4 can be up to
100 � slower than AutoDock Vina. AutoDock Vina has a batch
mode for a large number of ligands and also has modified versions
(e.g., QuickVina2, Vinardo, and InstaDock).
Both AutoDock4 and AutoDock Vina are continually maintained
and updated.

53% Free for
academic
use

https://autodock.
scripps.edu/
download-
autodock4/

AutoDock
Vina

Stochastic search (Monte-Carlo/BFGS
searching)

Knowledge-based and empirical energy scoring
function (Vina)

80% Free for
academic
use

https://vina.
scripps.edu/

AutoDockFR Stochastic algorithm (genetic algorithm and
Solis-Wets local search)

Force field-based and empirical scoring function
(AD4)

It uses receptors with flexible side chains and flexible ligands. 74% Free for
academic
use

https://ccsb.
scripps.edu/adfr/

AutoDock
CrankPep

Stochastic search (Monte-Carlo searching) Force field-based and empirical scoring function
(AD4)

It uses rigid receptors and flexible ligands. It is specially designed
for protein-ligand docking.

85.7% Free for
academic
use

https://ccsb.
scripps.edu/adcp/
documentation/

DOCK 6 Systematic conformational search (anchor-and-
grow search algorithm/BFGS)

Empirical energy scoring function It uses rigid receptors and flexible ligands. There are also six more
scoring functions and deterministic search options.

73.3% Free for
academic
use

https://dock.
compbio.ucsf.edu/
DOCK_6/index.
htm

CDOCKER Stochastic search (simulated annealing) and
deterministic search (MDS þ energy
minimization)

Force field-based scoring function (soft-core
potential)

It uses rigid receptors and flexible ligands. The last update was
made in 2016 and called Flexible CDOCKER (62.7% successful rate),
which can set flexibility for receptors and was accelerated by SGLD.
Flexible CDOCKER can remove the simulated annealing procedure.

74% Need to
purchase;
built in
Discovery
Studio

https://discover.
3ds.com/
discovery-studio-
visualizer-
download

LibDock Systematic conformational search (geometric
hashing algorithm/BFGS)

Empirical energy scoring function (Ligscore) It uses rigid receptors and flexible ligands. No update was reported
after 2007.

46% Need to
purchase;
built in
Discovery
Studio

https://discover.
3ds.com/
discovery-studio-
visualizer-
download

LigandFit Stochastic search (Monte-Carlo searching) Empirical energy scoring function (Ligscore) It uses rigid receptors and flexible ligands. No update was reported
after 2003.

e Need to
purchase;
built in
Discovery
Studio

https://discover.
3ds.com/
discovery-studio-
visualizer-
download

GOLD Stochastic search (genetic algorithm) Empirical energy scoring function (Chemscore)
or knowledge-based scoring function (GOLD)

It uses partial flexibility for receptors and flexible ligands. 81% Need to
purchase

https://www.ccdc.
cam.ac.uk/
solutions/csd-
discovery/

PLANT Stochastic search (ant colony algorithm) Empirical energy scoring function
(LANTSCHEMPLP and PLANTSPLP)

It uses partial flexibility for receptors and flexible ligands. 72% Free for
academic
use

http://www.tcd.
uni-konstanz.de/
research/plants.
php

Glide Systematic conformational search (hierarchical
searching) and deterministic search algorithm

Empirical energy scoring function (GlideScore)
or empirical energy scoring function (Emodel)

It uses partial flexibility for receptors and flexible ligands. It uses
GlideScore to rank ligands and Emodel to find the best
conformation. It is continually maintained and updated.

82% Need to
purchase

https://www.
schrodinger.com/
products/glide

Surflex-
Dock

Systematic conformational search (incremental
construction search)

Force field-based and empirical scoring function It uses a rigid receptor and flexible ligands. It is continually
maintained and updated.

78.6% Need to
purchase

https://www.
biopharmics.com/
downloads/

MOE Stochastic search (triangle matcher algorithm) Force field-based scoring function (S value) It uses a rigid receptor and flexible ligands. 61.2% Need to
purchase

https://www.
chemcomp.com/
Products.htm
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Molecular docking web servers
Website Type Additional comments Availability

CB-Dock http://clab.labshare.cn/cb-dock/php/index.
php

Global docking Cavity-detection guided global docking based on Autodock Vina Free

PepSite2 http://pepsite2.russelllab.org/ Global docking Stochastic search (spatial position specific scoring matrix) and knowledge-based scoring function (hot spot score) Free
SwissDock/

EADock DSS
http://www.swissdock.ch/ Local/global

docking
Stochastic search (EADock dihedral space sampling) and Force field-based and empirical energy scoring function (EADock2) Free

HPEPDOCK http://huanglab.phys.hust.edu.cn/hpepdock/ Global docking Systematic conformational search (hierarchical searching) and knowledge-based and empirical energy scoring function Free
HADDOCK https://wenmr.science.uu.nl/haddock2.4/ Global docking Systematic conformational search (an experimental knowledge-driven searching method) and energy scoring function

(HADDOCK score)
Free

CABS-dock http://biocomp.chem.uw.edu.pl/CABSdock Global docking Fully flexible receptors and ligands; deterministic search (CABS coarse-grained protein model) and empirical scoring function
(energy scoring and structural clustering)

Free

PIPER-
FlexPepDock

http://piperfpd.furmanlab.cs.huji.ac.il/ Global docking Systematic conformational search (fragment-based searching) and Force field-based and empirical scoring function (FFT docking
algorithm)

Free

FlexPepDock http://flexpepdock.furmanlab.cs.huji.ac.il/ Local docking Fully flexible refinement; stochastic search (Monte-Carlo sampling with energy minimization) and Force field-based scoring
function (Rosetta score12 and Rosetta centroid score4)

Free

InterEvDock3 http://bioserv.rpbs.univ-paris-diderot.fr/
services/InterEvDock3/

Template-based
docking

Mainly used for protein-protein docking and can also be used for protein and long peptide docking. Free
Systematic conformational search (FRODOCK algorithm) and Force field energy scoring function (InterEvScore)

Molecular dynamics simulation software
Name Website Availability
NAMD https://www.ks.uiuc.edu/Research/namd/ Free and open source for academic users
GROMACS https://www.gromacs.org/ Free and open source
OpenMM https://openmm.org Free and open source
CHARMM http://www.charmm.org/ Free for academic users
LAMMPS https://lammps.org Free and open source
AMBER http://ambermd.org/ Need to purchase
Force fields
Name Website Availability
CHARMM http://mackerell.umaryland.edu/charmm_ff.shtml Free
AMBER https://ambermd.org/AmberModels.php Free
GROMOS https://www.igc.ethz.ch/gromos.html Free
OPLS http://zarbi.chem.yale.edu/oplsaam.html Free
KBFF20 https://kbff.chem.k-state.edu/ Free
Free energy calculation tools
Name Website Availability
YANK https://getyank.org Free
BFEE2 https://github.com/fhh2626/BFEE2 Free
pAPRika https://paprika.readthedocs.io Free
BRIDGE https://github.com/scientificomputing/bridge Free

Note: * means the root-mean-square deviation of the difference between the predicted molecular conformation and the experimental conformation is lower than 2.0 Å. The success rate can only be used to compare the
performance of different docking tools when they have the same benchmark.
Abbreviations: AIRs: Ambiguous Interaction Restraints; BFGS: BroydeneFletchereGoldfarbeShanno algorithm; FFT: Fast Fourier transform; MDS: molecular dynamics simulation; SGLD: self-guided Langevin dynamics.
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Table 6
Selected virtual screening strategies using molecular docking & molecular dynamics simulation.

Protein source Bioactivity Molecular
docking

Molecular
dynamics
simulation

Additional comments In vitro or in vivo experiments Reference

Fermented
soy

Keap1eNrf2
interaction
inhibitory
activity

CABS-Dock,
GalaxyPepDock,
and HADDOCK

e 28 peptides identified by LC-MS; CABS-Dock and
GalaxyPepDock were used for screening, and
HADDOCK was used for conformation refinement

Thirteen peptides were selected for
in vitro and in vivo antioxidant
experiments

[136]

Egg protein Keap1eNrf2
interaction
inhibitory
activity

CDOCKER e Fluorescence polarization assay was used to further
refine the FBPs selected by CDOCKER

HepG2 cell model for oxidative damage,
cytotoxicity, and cytoprotection
evaluation

[7]

Pea protein DPP IV
inhibitory
activity

AutoDock Vina e 30 peptides identified by LC-MS and contained P/A at
the second position at N-terminus were further
screened for peptide synthesis

Eight peptides were synthesized for
in vitro DPP IV inhibitory activity assay

[66]

Pumpkin seed ACE inhibitory
activity

MOE GROMACS
for 30 ns of
simulation;
Force field:
Amber99SB-
ILDN

Identified 47 di/tripeptides virtually screened by
MOE; ADMET evaluation to select for peptide
synthesis

Tripeptide IFA was synthesized for
in vitro ACE inhibitory activity assay

[42]

e ACE inhibitory
activity

GOLD AMBER12
for 25 ns of
simulation;
Force field:
AMBER FF03

8000 theoretical tripeptides were ranked by GOLD,
and MDS was used to elucidate interaction
mechanism

Five peptides (WCW, IWW, WWW,
WWI and WLW) were synthesized for
in vitro ACE inhibitory activity assay

[135]

Amaranth
protein

Renin
inhibitory
activity

CABS-dock and
FlexPepRDock

e CABS-dock for ligand-receptor docking; FlexPepDock
for conformation refinement and peptide-protein
interaction energy evaluation (Rosseta score)

Four peptides were synthesized for
in vitro renin inhibitory activity assay

[8]

Mytilus edulis
proteins

Thrombin
inhibitory
activity

CDOCKER e 39 peptides identified by LC-MS and further screened
by CODCKER

KNAQNQLGEVTVR was synthesized for
in vitro thrombin inhibitory activity
assay

[120]

Bovine milk
casein

Antithrombotic
activity

CDOCKER e 35 peptides identified by UPLC-Q-TOF-MS/MS and
further screened by CODCKER

No peptide synthesis for validation [123]

Walnut meal Tyrosinase
inhibitory
activity

AutoDock 4 and
CDOCKER

e 606 peptides identified from LC-MS were screened by
AutoDock 4; CDOCKER was used for conformation
refinement

FPY was synthesized for in vitro
experiment

[6]

Sesame seeds Tyrosinase
inhibitory
activity

AutoDock 4 e Eight peptides were selected from 361 peptides
reported to exhibit antioxidant activity from in silico
proteolysis simulation

No peptide synthesis for validation [56]

Oncorhynchus
mykiss
Nebulin

Umami CDOCKER e 332 peptides were obtained from in silico proteolysis
simulation and further screened by CODCKER

20 peptides were synthesized and
tested by electronic tongue

[23]
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with stochastic search or systematic search for the final confor-
mation optimization (e.g., CDOCKER, GLOD, and Glide) (Table 5).
4.2. Scoring function in molecular docking

The scoring function is the conformation selector for the results
from the sampling engine. It selects by estimating the difference in
energy (or free energy) between the ligandereceptor complex and
the isolated unbound molecules [114,124,129]. There are three
types of scoring functions: force field-based scoring functions,
empirical scoring functions, and knowledge-based scoring func-
tions [118]. Force field-based scoring functions are composed of a
series of energy terms from a classical force field, including bonded
(intramolecular) and nonbonded (intermolecular) components,
and in some cases, the solvation terms are also included, but they
are more computationally expensive [68]. Empirical scoring func-
tions have relatively simple energy terms for calculation by
assigning weights to different empirical energy terms (e.g.,
hydrogen bonding, ionic bonding, non-polar interactions, des-
olvation, and entropic effects), and the weights are obtained by
training models for the experimental data [114,124,131].
Knowledge-based scoring functions are computationally simple
and based on statistical analysis of interaction atom pairs from
complexes with experimentally derived 3D structures; the fre-
quency of the ligand-receptor atom pairs is computed for scoring
[114,132]. There are also some integrated strategies (also called
18
consensus scoring) that attempt to take advantage of different
scoring functions. An example is AutoDock Vina, which combines
knowledge-based and empirical scoring functions for scoring and
ranking.
4.3. Other considerations in molecular docking

Docking studies can also be characterized as local, where a
known active site of the receptor is targeted, or global (also known
as blind docking), where the active site is unknown. Some docking
servers (such as CBDock) will first perform an analysis to locate
possible binding cavities and then apply local docking in turn to
each cavity [133]. Most of the targeted proteins for FBP studies have
known active pockets, so there is no need to conduct global dock-
ing, but some web servers (e.g., Pepsite2, CABS-dock, HADDOCK,
etc.) adopt global docking by default [50,65,96,134]. For all docking
software, users can choose whether to conduct docking over an
important part of the receptor (local) or over the entire receptor
(global), although the latter requires more computational effort or
reduced exhaustiveness.
4.4. Application of molecular docking in FBP virtual screening

In FBP studies, the most common molecular docking technique
is to identify potential bioactive peptides by LC-MS from the
highest activity fractionation or proteolysis simulation and then
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conduct molecular docking of these peptides on targeted proteins
(e.g., ACE, renin, DPPIV, etc.) (Table 6). The peptides with the most
favorable docking scores can then be synthesized for in vitro or
in vivo bioactivity determination, and the docked conformations
can help elucidate the interaction mechanism, highlighting
particular hydrogen bonds, hydrophobic contacts, pep stacking, or
other such interactions between protein receptors and peptide li-
gands [66,42,120,122,123]. This approach does not lend itself to
large-scale virtual screening because of the difficulty of identifying
and synthesizing large numbers of peptides [92]. The study con-
ducted by L. Li et al. on Keap1eNrf2 interaction inhibitory FBPs was
a great example for future molecular docking-driven FBP screening.
In the study, a total of 400 dipeptides and 6138 tripeptides were
screened by CDOCKER, and six dipeptides and ten tripeptides with
stronger binding affinity were synthesized for in vitro and in vivo
experiments. Finally, two tripeptides (DKK and DDW) with strong
inhibitory activity were successfully obtained [7]. Another such
attempt employed GOLD to screen ACE inhibitory activity from
8000 theoretical tripeptides, of which the five with the highest
binding affinitywere synthesized for experimental validation [135].

Molecular docking involves many approximations and, even for
exhaustive sampling, the resulting poses are not guaranteed to be
correct nor is there a guarantee that the docking score closely
corresponds to experimental inhibition activity, as shown by the
inconsistency between binding affinity rank and experimental ac-
tivity results in the studies of Panyayai et al., and X. Li et al.
[7,135,137]. Some researchers proposed a new docking strategy
called consensus docking, which has shown a performance
improvement compared to single docking protocols in the reli-
ability of pose prediction for interaction mechanism determination
and virtual screening [138,139]. In consensus docking, different
molecular docking protocols are used for the same docking task,
and then the binding poses from different docking protocols are
compared to calculate the root-mean-square deviation (RMSD)
value. A molecular docking prediction will be accepted when the
RMSD value between different protocols is below 2 Å [139]. There is
a well-designed one-stop python package (dockbox, available at
https://pypi.org/project/dockbox/) for consensus docking or dock-
ing by different protocols [140]. Another more straightforward
strategy for consensus docking relies on summation of normalized
docking scores from different docking protocols, and corresponding
tools have been released for academic free usage (e.g., MolAr
software and the DockingPie plugin for PyMol) [141,142].In the
studies of Tonolo et al. and Nardo et al., a similar idea was adopted
where two docking protocols were employed consecutively to
refine the docking results, but neither study adopted RMSD
threshold values or normalized summation of docking score for
refinement [8,122]. By combining large-scale screening for FBPs
and consensus docking, we can hope to build molecular docking
binding affinity databases for small peptides.

Although consensus docking can improve the reliability of
docking results for unknown peptides, we also need to assess the
correlation between identified FBPs with bioactivity values and the
binding affinity results from molecular docking. The only one such
study was conducted in 2007 by Pripp, where the coefficient is only
0.29 between the docking score of 29 ACE inhibitory FBPs with ACE
and the experimentally observed log(1/IC50), which means the
prediction power of molecular docking in the virtual screening of
ACE inhibitory peptides was poor [143]. With the increasing
availability of FBPs and improvements in molecular docking stra-
tegies in the past decades, especially the introduction of consensus
docking, wemay hope to see performance improvement in the near
future.

Finally, there are two areas of concern in molecular docking.
First, unlike conventional drug-like molecules that may include a
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wide variety of chemical groups but typically have a limited
number of accessible conformations, most peptides are composed
of only 20 different amino acids but have high conformational
flexibility. As such, more information in the representative de-
scriptors or strings may be needed to describe their conformation
flexibility, especially for long peptides that form secondary struc-
tures (>4 residues) [37,90,92]. Table 1 includes some secondary
structure prediction tools for molecular docking of long peptides
and protein receptors when a secondary structure is needed (e.g.,
CABS-dock). Second, unless an allosteric binding site is known and
considered as part of the docking region, molecular docking is not
suitable for virtual screening of non-competitive inhibitors, which
may be another important factor that causes inconsistency be-
tween in vitro or in vivo studies and molecular docking [144].

5. Molecular dynamics simulation and its application in FBP
virtual screening

Molecular dynamics simulation is also a structure-based
approach for virtual screening and can explore interaction mech-
anisms at the atomic level, but is typically much more computa-
tionally demanding than molecular docking [22,113]. It is typically
considered to bemore accurate than docking and better able to give
physical insight [145], compensating for its greater computational
cost. In molecular dynamics simulations, the behavior of molecules
(not limited to ligands and receptors) over a period of time under
the constraints of physical laws (classical or quantum theories) are
captured [15,114]. Quantum chemistry methods, which explicitly
treat all or some electrons at the quantum mechanical level, are
prized for yielding highly accurate energies and molecular geom-
etries with few or no empirical parameters. However, despite
methodological improvements in the past couple decades, the
computational expense of quantum mechanics-based methods
remains prohibitive for probing the behavior of proteins sur-
rounded with explicit water molecules on time scales relevant for
binding processes (often microseconds or more). On the other
hand, classical molecular dynamics simulations can be used to
simulate complete proteins and ligands in an aqueous environment
for time scales currently reaching many microseconds (or even
milliseconds with specialized hardware [146]). Classical molecular
dynamics is based on numerical solutions of Newton's equations of
motion (or similar equations for constant temperature or pressure
thermodynamic ensembles) for collections of atoms. The downside
of this method is that the accuracy of the results is dependent on
the accuracy of the empirical potential energy functions, termed
“force fields”, that describe interactions between atoms (or parti-
cles representing groups of atoms in united atom or coarse-grained
models). Fortunately for the study of peptideeprotein binding,
force fields describing polypeptides consisting of the 20 proteino-
genic amino acids in water have been developed and constantly
improved over the past three decades [147e153].

The most practical consideration for molecular dynamics
simulation is the selection of the force field. Commonly used force
fields and molecular dynamics simulation software are summa-
rized in Table 5. The most common force fields for protein and
peptide simulations are the CHARMM and Amber force fields,
which are based on models where each atom is represented as a
point particle carrying a partial charge and the network of covalent
bonds is fixed at the beginning of the simulation [149,153].
Therefore, while conventional molecular dynamics simulations can
represent interactions that give rise to physical bonding, including
hydrogen bonds, salt bridges, the hydrophobic effect, and other
solvation-dependent interactions, they are unable to directly
describe chemical reactions and changes in protonation state and
may not accurately represent changes in electrical polarization

https://pypi.org/project/dockbox/
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between different environments. Techniques and alternate force
fields to overcome these limitations have been developed; how-
ever, they often incur increased computational cost and, for typical
peptideeprotein simulations, improved accuracy is not guaranteed.
There can be trade-offs between systematic errors, which are
reduced by more accurate models, and statistical errors due to
insufficient sampling, which can be increased by using more ac-
curatemodels since thesemodels are often slower and the real time
available to researchers is fixed.

5.1. Molecular dynamics simulations for proteineligand binding

Conventional molecular dynamics simulations (with fixed
atomic charges, protonation states, and covalent bonds) have
become mainstream for studying peptide-protein binding,
including for studying FBPs [154,155]. By putting peptide ligands
and protein receptors into a simulation box, typically along with
explicit water molecules and dissolved ions, one can simulate
protein-ligand interaction for anywhere between femtoseconds to
milliseconds [146] at a given temperature and pressure. If the ki-
netics of binding between the ligand and receptor is sufficiently
fast, a protein-ligand complex will be observed after a period of
dynamics simulation. In the case of very fast kinetics and low
binding affinity, multiple binding and unbinding events can be
observed, allowing for direct estimation of the equilibrium con-
stants. However, for peptide ligands, the kinetics will be almost
alwaysmuch too slow to estimate equilibrium constants from brute
force simulation. Including multiple ligands in the simulation box
can help to observe spontaneous binding, although there is no
guarantee that any of the binding poses found are the lowest en-
ergy [156,157]. Docking is often a more efficient way to search for
and find putative bound conformations of proteineligand com-
plexes. Hence, a typical molecular dynamics approach to virtual
screening is to perform docking to obtain multiple poses of the
bound ligand in the protein binding site. Each of the poses can be
solvated in explicit water and ions and subjected to molecular dy-
namics simulation. Restraints are usually applied during the energy
minimization and equilibration stages of the simulation to avoid
prematurely disrupting the complex while water molecules, ions,
and some parts of the protein may be far from equilibrium. Such
molecular dynamics simulations can help to identify which poses
predicted by docking are truly stable [137,158]. For example, if for a
given pose, the peptide dissociates from the protein a few nano-
seconds after equilibration for several different initial conditions
(different initial atomic velocities or water molecule positions),
then it can be assumed that the binding affinity for this pose is
marginal.

Numerous methodologies have been used to estimate free en-
ergies of protein-ligand binding for virtual screening and the field
continues to develop rapidly [145]. The SAMPL challenges provide a
snapshot of methods currently used for estimating binding free
energies from molecular dynamics simulations (or by other means
such as machine learning) and some indication of which methods
may work better than others [159e162]. While these SAMPL chal-
lenges focus on host-guest systems, which are likely easier than
protein-ligand systems due to the relative symmetry and rigidity of
the hosts compared to proteins, they reveal aspects of the calcu-
lation that need to be considered for accurate results such as the
details of the computational protocol, conformational sampling,
multiple bound conformations, minor protonation states, and
atomic polarizability.

At the present time, molecular models with fixed atomic
charges, protonation states, and covalent networks and explicit
solvent are the most commonly used for simulating
peptideeprotein interactions; however, for specific cases, more
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sophisticated methods and force fields might be needed. For
instance, peptide therapeutics with a covalent mechanism of action
have recently attracted increased interest [163] and can be studied
by hybrid methods combining classical molecular dynamics and
quantum chemistry methods [164]. Protein force fields that
explicitly represent atomic polarizability have also been developed
[165] and are continually being improved [166,167]. However,
models with atomic polarizability incur a greater computational
cost and have less history of development than force fields with
fixed atomic charges and, so far, there is no guarantee of improved
accuracy over fixed-charge force fields for all systems. Nonetheless,
recent submissions to the SAMPL challenges using a polarizable
force field appear have been among the best performers [159,160].
Furthermore, for systems where highly polarizable ions play
important roles, force fields including atomic polarizability can be
crucial for reasonable results [168].

5.2. Binding free energy estimates with MM-PBSA and MM-GBSA
methods

Even if association or dissociation is observed on a time scale
accessible tomolecular dynamics simulations, a single simulation is
not sufficient accurately characterize the equilibrium constant for
proteineligand binding or, equivalently, the binding free energy. As
end-point methods, the MM-PBSA (molecular mechanics
PoissoneBoltzmann surface area) and MM-GBSA (molecular me-
chanics generalized Born surface area) methods provide a conve-
nient way to estimate binding free energies from molecular
dynamics simulations without the need for observing association
or dissociation events. Tools for performing these calculations with
the GROMACS and Amber molecular dynamics packages have been
developed [169,170]. The basic idea of the methods is use
explicitesolvent molecular dynamics simulation to obtain an
ensemble of different conformations of bound complex, and sepa-
rately, ensembles of conformations of the free receptor and ligand
[171]. The binding free energy is estimated by post-processing
these simulation trajectories using the equation DGbind ¼ Gcomplex
e Gfree ligand e Gfree receptor. Calculating these Gibbs free energy
terms directly from explicit-solvent simulation is challenging due
to the noisiness of the solvent contribution to the enthalpy (water
molecules and ions sample many different positions and orienta-
tions during the simulation) and the difficulty of calculating
changes in the entropy of the solvent [172]. The MM-GBSA and
MM-PBSA methods overcome these difficulties by discarding the
explicit water molecules and dissolved ions from the trajectory and
estimating the solvation contributions to the free energy using
continuum models. The polar solvent/ion contribution to free en-
ergy is calculated using the continuum PoissoneBoltzmann (PB) or
generalized Born (GB) techniques and the nonpolar contribution
with a term proportional to the solvent-accessible surface area (SA).
Hence, Gibbs free energy terms for each of the three systems
(complex, free ligand, free receptor) are calculated by
G ¼ <EMM> þ <Gsolv> þ g<A> e TSconf, where < … > denotes an
average over the simulation trajectory, EMM is the potential energy
from the force field for the ligand and receptor (neglecting the
explicit water molecules and dissolved ions), Gsolv is the polar
portion of the solvation free energy calculated by
PoissoneBoltzmann or generalized Bornmethod and averaged over
the trajectory, gA is the nonpolar contribution to the solvation free
energy, A is the solvent-accessible surface area of the ligand and
receptor molecules, g is a parameter linearly relating the solvent-
accessible surface area and free energy, T is the temperature, Sconf
is the conformational entropy of the ligand and receptor. The
conformation entropy is typically estimated by a normal mode
analysis or the quasi-harmonic method, which are both
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implemented in the GROMACS package [173e175]. It should be
noted that thesemethods of computing conformational entropy are
costly and the inclusion of the conformational entropy term not
guaranteed to improve agreement with experiments [176].

5.3. Rigorous binding free energy calculations

MM-PBSA and MM-GBSA methods are not rigorous in the sense
that the simulations are typically performedwith explicit water, yet
the solvation free energy is obtained with a continuum model, and
the conformational entropy is not directly calculated, but approx-
imated using normal mode or quasi-harmonic methods. While
MM-PBSA andMM-GBSA aremore efficient than rigorousmethods,
they can yield poor predictions for protein-peptide binding free
energies where rigorous methods obtain good agreement with
experiment [177]. Rigorous methods instead seek to calculate the
free energy under a given molecular dynamics model and force
field without approximations (although this free energy value may
differ from the true experimental value). These methods are not
end-point methods and require comprehensive sampling along a
path from the bound to unbound states, which requires consider-
able computational resources for even a single calculation. The path
taken between the bound and unbound states may be entirely
unphysical, such as in alchemical methods where the atoms of the
ligand are gradually deleted or inserted, or the ligand and the re-
ceptor may be physically separated along geometric coordinates,
which may still not be the most likely path taken in reality
[178,179]. However, because free energy is a state function, the path
taken between the two states should not affect the change in free
energy between the states and, therefore, one can choose an
unphysical path that makes the calculation most efficient (or
merely feasible). Notably, changes in the conformation and orien-
tation of the ligand relative to the receptor between the bound and
unbound states can make convergence of the free energy unac-
ceptably slow. Hence, for both alchemical and geometric pathways,
it is often necessary to apply conformational and orientational re-
straints to the ligand (and possibly parts of the receptor as well)
[180]. However, since these restraints are unphysical, their effect
must be removed. Therefore, conceptually, one takes the following
approach. First, the free energy of applying conformational and
orientational restraints to the free ligand in solution is calculated.
Next, the free energy of binding to the receptor is calculated under
these restraints, which allow relatively rapid convergence. Finally,
the free energy of releasing the conformational and orientational
restraints is calculated, so that the final free energy is calculated as
DGbind ¼ DGapply restraints þ DGbind-restrained þ DGrelease restraints. While
this approach is quite complex, recently several tools have been
released to make simplify performing rigorous free binding calcu-
lations, including BFEE [181], BFEE2 [182], YANK, BRIDGE [183], and
pAPRika [184].

It should be noted that this rigorous approach requires an initial
pose, used as the reference for the conformational and orienta-
tional restraints, that is assumed to be an accurate representation of
the bound state of the complex. The MM-PBSA/MM-GBSA methods
also require an initial pose. Obtaining such an accurate pose can be
difficult in the absence of an experimental structure, but can be
found by docking and brute-force molecular dynamics simulations.
Identifying the lowest free energy bound state may require per-
forming the rigorous or MM-PBSA/MM-GBSA method with
different poses. It is also possible that more than one distinct pose
contributes significantly to the bound free energy. Hence, it is often
beneficial to use a hierarchy of methods for screening. For example,
we used FlexPepDock to generate initial poses and docking scores
for 17 different peptide sequences, screened them by performing
conventional molecular dynamics simulations for up to 2 ms and
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calculating the MM-GBSA free energies, and, finally, performed
rigorous free energy calculations using the BFEE tool for two
selected peptides [185].

5.4. Application of molecular dynamics simulation in FBP studies

In FBP studies, the application ofmolecular dynamics simulation
is not as popular as that of molecular docking, whichmay be caused
by the tremendous computational demands and the complexity of
the operation [146,186]. It is more likely to be used to supplement
molecular docking results by optimizing the conformations of
peptideeprotein complexes for interaction mechanism elucidation,
or it may be used to validate the stability of peptideeprotein
complexes predicted through RMSD values [18,93,42,121]. For
example, two dual-functional peptides (RALP and WYT) were
studied by molecular docking and molecular dynamics simulation
to understand their difference in inhibitory potency. Both
peptideeACE complexes were intact after 200 ns of simulation, and
the two peptides moved out of the active sites of peptideerenin
complexes, which demonstrated the instability of the
peptideeprotein complexes predicted frommolecular docking. The
instability of this complex was further supported by the low
bioactivity [137]. Similar applications were also seen in the studies
of Liang et al. and Panyayai et al., where molecular dynamics
simulation was used to check the stability of the complex in salt
solution under room temperature (300 K) and 1 bar pressure for 30
ns and 25 ns, respectively [42,135]. Such additional work can help
explain the inconsistency between predicted and experimental
results in FBP studies.

Recently, a user-friendly front-end was proposed to run mo-
lecular dynamics simulation protocols in Google Colaboratory. It
successfully simplified the running procedures and provided the
needed computation power using cloud computing [186]. Such
efforts from bioinformatics could enhance the availability of mo-
lecular simulations and benefit biochemistry researchers who
struggle with limited in-house computing facilities, programming
environments, simulation operations, and result analysis.

6. Progress of integrated strategies in FBP screening

The integration of QSAR models, molecular docking, and mo-
lecular dynamics simulation has grown popular among biochem-
istry researchers for FBP virtual screening (Table 7). The most
popular strategy is to employ the QSAR model for the first round of
screening of peptide sequences from in silico proteolysis or LC-MS
identification; further screening is then conducted by molecular
docking, and sometimes molecular dynamics simulation is used to
optimize conformation for the interaction mechanism elucidation
[10,21,187e190]. The combination of different virtual screening
methods is expected to possess higher accuracy in FBP identifica-
tion. These methods were established on different theories to
describe and characterize peptides for screening, so double
screening would be more efficient than refinement under the same
theory (e.g., double screening by different molecular docking
methods) [8,107,134].

Most of the integrated studies focus onACE inhibitory activity and
DPP IV inhibitory activity [18,21,28,28,37,38,50,65,81,93,
96,107,107,134,187,189e191,193]. FBPs with these two inhibitory ac-
tivities have the potential to relieve two chronic diseases: hyperten-
sion and diabetes. As such, they deserve intensive attention from
researchers. On the other hand, the bioinformatics approach is a kind
of knowledge-based study,whichmeans themore information that is
available for one type of bioactivity, the better future bioinformatics
studies will be for that type of bioactivity, especially for QSARmodel
development. Therefore, for rarely studied types of bioactivity, to
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initiate bioinformatics-aided studies, we need to conduct large-scale
molecular docking screening as well as wet chemistry studies to
provide foundational knowledge on structure-activity relationships
for QSARmodel development.

Besides the general evaluation model (PeptideRanker), some
QSAR classification web servers for specific types of activity (e.g.,
PreAIP, AntiAngioPred, and PlifePred) are employed in FBP studies.
In addition, some QSAR models built by biochemistry researchers
have outperformed in dataset collection and curation, character-
ization methods, and model analysis, compared to those models
created bioinformatics background laboratories perhaps due to
biochemistry researchers’ better understanding of biological
properties [10,28,81,93,96,107,189]. For example, Kalyan et al. used
data mining to retrieve 1687 peptides from two databases, which
was significantly larger than most self-built models. In addition,
non-linear regression methods such as regression decision tree and
back-propagation neural network (BPNN) were employed by some
biochemistry researchers [81,189]. However, most of these models
suffer from one or several issues mentioned in Section 3, such as
small datasets and poor peptide descriptors
[10,28,81,93,96,107,189].

Moleculardocking toolsused in integratedstudies arediverse, and
some studies even adopted two docking tools for better refinement
and docking conformation optimization [8,37,50,65,134,187,195]. It is
difficult to differentiate the performance of different molecular
docking protocols in specific protein receptor cases, but generally, for
the same docking task, performance is proportional to time con-
sumption [186,197]. Compared to the use of two docking tools for
refinement, consensus docking would be a better alternative by
combining different molecular docking protocols with different
sampling algorithms or scoring functions [139]. The use of molecular
docking web servers is popular among FBP studies, and brief in-
troductions of these web servers are given in Table 5.

A novel strategy (ensemble docking) was introduced by Aguilar-
Toal�a et al. for FBP screening, where molecular dynamics simula-
tions of 300 ns were conducted to generate protein receptor con-
formations. Three representative conformations were selected for
further molecular docking tasks, and the average score of the ligand
with the three representative receptor conformations was used for
virtual screening [18]. Ensemble docking is also an alternative
approach to increase molecular docking accuracy. It can help locate
high-activity peptides by changing the protein receptor confor-
mation from a single source conformation (experimental or
modeled) to a number of conformations and thus enhance docking
performance [198,199].

7. Conclusion and directions for future research

This review provided an overview of using bioinformatics to
accelerate FBP screening and interaction mechanism exploration.
Database-driven virtual screening with proteolysis simulation has
been widely used to identify FBPs, to compare them with reported
FBPs, and to differentiate unknown peptides for further screening.
QSAR, molecular docking, and molecular dynamics simulation are
nowcommonly used for virtual screening of unknownpeptides and
elucidating interactionmechanisms. This review discussed in detail
the limitations of database-driven studies and bioactivity potency
evaluation system; the role of the dataset, peptide representation,
and model development in QSAR studies; as well as sampling al-
gorithms, scoring functions, force fields, and free energy estimation
methods. Although a lot of progress has been made using bioin-
formatics in FBP studies, there are still many challenges and specific
technical expertise can be required to obtain accurate results.

Bioinformatics has the potential to guide the production of
value-added products from agricultural byproducts, to promote
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sustainable agriculture, to evaluate the potency of food bioactivity
for precise nutrition, and to rationally design peptides derived from
food for nutraceutical, cosmeceutical, and pharmaceutical in-
dustries. The collaboration between biochemistry and bioinfor-
matics researchers is essential to achieve this potential.

To advance the application of bioinformatics in FBP studies, we
recommend the following areas.

1). Government-led non-profit databases for bioactive peptides
should be built, similar to protein databases (e.g., NCBI, RCSB
PDB, etc.). Such large and high quality databases are critical
to QSAR model development and efficient information
retrieval of bioactive peptides.

2). Dataset cleaning is a challenging task when collecting FBPs
data from different literature sources, where some bioac-
tivity results are affected by manual operations, experi-
mental conditions, etc., and should be removed for high
quality dataset construction. An example is our lab's web
server for ACE inhibitory peptide prediction, where a confi-
dent learning theory based tool, CleanLab, is employed to
clean real-world datasets and generate a high quality ACE
inhibitory peptide dataset [200].

3). Limited negative sample datasets are available for virtual
screening of FBPs, since most reported FBPs were identified
with high activity. A solution is to manually create negative
samples. For example, DUD-E server (http://dude.docking.
org/) can provide challenging decoys for checking molecu-
lar docking or QSAR model performance, which have been
used in umami dipeptide screening [17].

4). Protein language models are expected to gradually become
the mainstream peptide representation for bioactivity clas-
sification model development. Though it exhibited better
performance in peptide information representation, it suffers
from high feature dimension problem and might undermine
its application in small datasets. For QSAR model develop-
ment, besides the employment of advanced feature selection
methods and modeling methods, an stacking framework is
another alternative for modeling strategy, where different
modeling methods are combined together for decision-
making.

5). When the 3D structure of a targeted protein is not available
from X-ray crystallography or NMR, de novo structure pre-
diction by Alpha-Fold2 can be a great alternative to create
the 3D structure [201]. In addition, homology modeling and
threading modeling methods can be considered. In the last
five years, Electron Microscopy Data Bank (EMDB, https://
www.ebi.ac.uk/emdb/search/) has rapidly added new en-
tries and cryo-electron microscopy has rapidly become a
major source of experimental structures, overcoming many
difficulties with traditional X-ray crystallography and NMR
methods [12,202,203].

6). Molecular docking with advanced docking strategies, such as
consensus docking and ensemble docking, are expected to be
applied in FBPs discovery and improve the docking accuracy.
In addition, large-scale virtual screening based on open-
source programs have not yet been widely used in FBPs
studies. With the rapidly developing cloud computing plat-
forms such as Amazon Web Services (AWS), a user-friendly
and easy-operated servers is in great demand and will
significantly promote the popularization of molecular dock-
ing and molecular dynamics simulation in FBPs studies.

7). Graphic processing unit (GPU) parallel acceleration and high-
performance computation clusters have been introduced
into molecular docking and molecular dynamics simulation.
They can decrease computer time by more than an order of

http://dude.docking.org/
http://dude.docking.org/
https://www.ebi.ac.uk/emdb/search/
https://www.ebi.ac.uk/emdb/search/


Table 7
Selected virtual screening strategies integrating quantitative structure-activity relationship (QSAR) modeling, molecular docking, and molecular dynamics simulation.

Protein source Bioactivity QSAR model Molecular
docking

Molecular
dynamics
simulation

Additional comments Reference

e DPP-IV inhibitory
activity

Self-built regression
model

AutoDock
Vina

GROMACS for
100 ns of
simulation
Forcefiled:
AMBER14SB
and General
AMBER

PaDEL descriptors for peptide representation, GA for
feature selection, and MLR for regression model

[21]

Sorghum protein DPP-IV inhibitory
activity

PeptideRanker HPEPDOCK
and
FlexPepDock

e PeptideRanker for rough virtual screening, and
HPEPDOCK and FlexPepDock for refinement

[65]

Bean protein DPP-IV inhibitory
activity

PeptideRanker Pepsite2 e PeptideRanker for rough virtual screening and PepSite2
for refinement and selection for in vitro assay peptide
synthesis

[50]

Draft beer DPP-IV inhibitory
activity and ACE
inhibitory activity

PeptideRanker Sybyl
software

PeptideRanker for rough screening and selection for
in vitro assay peptide synthesis; Sybylfor interaction
mechanism; absorption and toxicity evaluation

[191]

Cheese Antidiabetic activity PeptideRanker Pepsite2 and
HPEPDOCK

e PeptideRanker for rough virtual screening and PepSite2
for refinement and selection for in vitro assay peptide
synthesis; HPEPDOCK for interaction mechanism

[38]

Rubing cheese ACE, a-glucosidase, and
Keap1eNrf2 interaction
inhibitory activity

PeptideRanker Pepsite2 and
AutoDock
Vina

PeptideRanker for rough virtual screening and PepSite2
for refinement and selection for in vitro assay peptide
synthesis; AutoDock Vina for interaction mechanism

[192]

Chia Seed ACE inhibitory activity,
anti-inflammatory
activity, and plasma
stability

PeptideRanker,
AHTpin, PreAIP,
AntiAngioPred, and
PlifePred

AutoDock
Vina

PMEMD for
300 ns of
simulation
Force fields:
amberff14 and
GAFF

PMEMD for conformation generation of protein receptors
and AutoDock Vina for molecular scoring

[18]

Egg yolk protein ACE inhibitory activity PeptideRanker and
AHTpin

Autodock
CrankPep

e PeptideRanker for bioactivity possibility prediction and
AHTpin for virtual screening of ACE inhibitory FBPs

[190]

b-Casein ACE inhibitory activity Self-built
classification model

AutoDock
Vina

e Eight sequence-based and structure-based features for
decision tree model

[189]

Camel milk ACE and renin
inhibitory activity

PeptideRanker PepSite2
and Glide

e PeptideRanker for rough screening and Pepsite2 for
refinement; Glide for interaction mechanism

[187]

e ACE inhibitory activity Self-built regression
model

AutoDock4 e Dragon descriptors, AAindex, and 5-z scale for peptide
representation; KNN, RFR, MLP, and SVMR for regression
model to further select for peptide synthesis and in vitro
assays

[28]

ACE inhibitory activity Self-built regression
model

AutoDock4 e 3D QSAR models (PLSR) based on ligand template-based
molecular alignment and MIF calculation; AutoDock4 for
interaction mechanism

[10]

Honey protein ACE inhibitory activity AHTpin PatchDock e AHTpin for rough screening, PatchDock for refinement,
and FireDock for interaction mechanism

[193]

Camel milk ACE inhibitory activity PeptideRanker and
AHTpin

PepSite2
and Glide

e PeptideRanker and AHTpin for rough screening, Pepsite2
for refinement, and Glide for interaction mechanism;
toxicity evaluation

[134]

Salmo salar collagen ACE inhibitory activity PeptideRanker SwissDock
and
CDOCKER

e PeptideRanker for rough screening, SwissDock for
refinement, and CDOCKER for interaction mechanism;
physicochemical property and toxicity evaluation

[37]

Silkworm cocoon ACE inhibitory activity Self-built regression
model

Surflex-
Dock

e 3D QSAR models (PLSR) based on ligand template-based
molecular alignment; MIF calculation by CoMFA and
CoMSIA; toxicity and digestive stability evaluation to
further select peptides for synthesis and in vitro assays

[96]

Qula casein ACE inhibitory activity Self-built regression
models

Discovery
Studio

e 5z-scale was used to build PLSR models for penta/hexa/
hepta/octapeptide; QSAR model for rough screening of
peptides identified from LC-MS and Autotock Vina for
refinement and further selection for peptide synthesis
and in vitro assays

[107]

Bovine blood ACE inhibitory activity Self-built regression
model

CDOCKER e 10 descriptors were generated by Discovery Studio and
modeled by BPNN for further selection for peptide
synthesis and in vitro assays; 24 pentapeptides in dataset

[81]

Egg Aminopeptidase N
inhibitory peptides

PeptideRanker CDOCKER e PeptideRanker, physicochemical property evaluation, and
AMDET evaluation combined for virtual screening;
CDOCKER for interaction mechanism

[194]

Rice Immunomodulatory
activity

NetMHCpan 4.0 CABS-dock e NetMHCpan 4.0 for virtual screening by binding affinity
prediction and CABS-dock for interaction mechanism

[101]

Donkey collagen Tyrosinase inhibitory
activity

PeptideRanker and
prediction for water
solubility and
toxicity

CDOCKER GROMACS for
60 ns of
simulation;
Force field:
CHARMM36

PeptideRanker, physicochemical properties, and
CDOCKER combined for virtual screening

[195]

(continued on next page)
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Table 7 (continued )

Protein source Bioactivity QSAR model Molecular
docking

Molecular
dynamics
simulation

Additional comments Reference

Camel milk Cholesterol esterase
inhibitory activity

PeptideRanker PepSite2
and Glide

e PeptideRanker and Pepsite2 for rough screening and
Glide score and MM-GBSA for refinement; Glide for
interaction mechanism

[196]

Abbreviation: BPNN: back-propagation neural network; CoMFA: comparative molecular field analysis; CoMSIA: comparative molecular similarity indices analysis; GA: genetic
algorithm; KNN: k-nearest neighbor; MIF: molecular interaction field; ML: machine learning; MLP: multilayer perceptron; MM-GBSA: molecular mechanics-generalized born
surface area; MLR: multiple linear regression; PLSR: partial least squares regression; RFR: random forest regression; SVMR: support vector machine regression.
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magnitude and enable even expensive molecular dynamics
simulations to be performed with commodity computer
hardware [204e209].

8). Current virtual screening studies that use molecular docking
and molecular dynamics simulation focus on the interaction
between different ligands and the same receptor. It would be
meaningful to conduct molecular docking with identified
FBPs that have specific bioactivities and proteins with other
desired bioactivities for the screening of multi-bioactivity
FBPs. This strategy has been used in QSAR studies (e.g.,
SwissTargetPrediction) where various 2D and 3D molecular
fingerprints were proposed to encode molecules with un-
known bioactivity in digital formats for molecular similarity
calculations (Manhattan distance-based similarity). The
most matchable molecules among the 376,342 molecules in
the dataset were used to predict the potential activity cor-
responding to 3068 macromolecular targets [210].

9). Biochemistry researchers are encouraged to keep upwith the
latest progress in bioinformatics fields and its corresponding
outcomes, and bioinformatic researchers could make their
findingsmore accessible to biochemistry researchers, such as
developing and providing web servers.
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