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ABSTRACT: There has been a growing interest in extracting antioxidant peptides from food proteins. This study aimed to develop
efficient computer-aided approaches to accelerate the screening efficiency of antioxidative dipeptides. A newly developed quantitative
structure−activity relationship model and an improved hydrolysis simulation tool, R-PeptideCutter, were applied to screen high-
activity dipeptides in sorghum kafirin. The R2Test and MSETest values were 0.6082, 0.6764 and 0.5302, 0.5467, respectively, for 2,2′-
azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging capacity and oxygen radical absorbance capacity (ORAC)
models. N-terminus residues dominated the antioxidant activity, especially in the ABTS assay, and Y and W at the N-terminus
strongly corresponded to higher activity in both assays. The dipeptide YR was predicted as the strongest antioxidant in kafirin
(3.352/2.099 μmol Trolox/μmol peptide for ABTS/ORAC activity). Eight kafirin-derived dipeptides were synthesized for model
validation. The corresponding ORAC model achieved greater prediction performance, while the ABTS radical scavenging capacity
model showed an underestimation in prediction. The improved tool and knowledge can be applied to other proteins and benefit the
research and development on antioxidant peptides.
KEYWORDS: antioxidant peptides, artificial intelligence, hydrolysis simulation, sorghum protein, in silico

1. INTRODUCTION
Developing natural antioxidants has gained expanding interest
because of the increasing health concerns for synthetic
antioxidants and strict regulation on their usage.1−3 Anti-
oxidant peptides derived from food proteins have captured
worldwide attention due to their advantages such as naturally
sourced, better sustainability, and no or low toxic effects.1,3,4

Generally, antioxidant peptides are released from parent
proteins by enzymatic hydrolysis, fermentation, chemical
hydrolysis, germination, and/or ripening and then screened
by laborious chemistry methods (e.g., fractionation, isolation,
purification, identification, and characterization).1,5 However,
the conventional wet-chemistry methods are time-consuming
and rely highly on many advanced instruments and equip-
ment.1,2,5 The chemical synthesis of peptides is an alternative
approach for producing and screening potentially highly active
peptides.5−7 Nonetheless, it is practically impossible to
synthesize all the peptides for antioxidative peptide screening,
considering the cost of synthesis and a large number of
theoretically possible peptides: i.e., 400 dipeptides, 8000
tripeptides, 160000 tetrapeptides, etc.4,8,9

Tremendous bioactive peptides have been identified, making
it possible to use these accumulated activity data for modeling
quantitative structure−activity relationships. The models can
also provide more efficient and cost-effective guidance for the
exploration of new bioactive peptides.1,2,10,11 Such in-silico
approaches have been successfully applied to predict
angiotensin I converting enzyme inhibitory (ACE-I) activity,
dipeptidyl peptidase IV (DPP-IV) inhibitory activity, and
antimicrobial activity.12−14 Besides, some peptide cutting
simulation tools (e.g., PeptideCutter) were developed for

protein in-silico hydrolysis, which can be combined with more
than 156 million identified protein sequences from the Uniprot
database to obtain potentially bioactive peptide sequences
generated by specific enzymes or a combination of multiple
enzymes.15−18 There have been few studies and limited models
on antioxidant peptides, especially for dipeptides, which
demonstrate ideal absorption ability and bioavailability in the
intestine compared to larger peptides.7−9,19 In addition, the
order of in-silico hydrolysis with multiple enzymes was not
specified in the previous peptide cutter tools, which is critical
in practical experiments and should be developed.15−18

Therefore, the objectives of this study were to (1) develop
highly predictive models that could guide the discovery of
peptides with high antioxidant activity and shed light on
critical amino acid features that determine the antioxidant
activity, (2) build an improved protein cutting simulation tool
with consideration of hydrolysis order and enlarge the
inclusion of published enzymes or chemicals for protein
hydrolysis, (3) employ the prediction models and protein
cutter tool to screen antioxidant dipeptides in an underutilized
protein, sorghum kafirin, and (4) design and synthesize
antioxidant dipeptides encrypted in kafirin sequences and
evaluate their antioxidant activity for model performance
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validation. The overall technical workflow of the study is
summarized in Figure 1.

2. MATERIALS AND METHODS
2.1. Data Set Collection. Data mining (Beautiful Soup, 4.5.3)

was used to collect 566 numerical indices of amino acids from
AAIndex, and detailed definitions and descriptions of each index are
available online (https://www.genome.jp/aaindex/).20 The indices
with missing values for amino acids were manually deleted, resulting
in a total of 553 remaining indices (Supplementary Document 1).
Antioxidant activities of dipeptides based on in vitro antioxidant assays
including both a 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate)
(ABTS) radical scavenging capacity assay and an oxygen radical
absorbance capacity (ORAC) assay, were manually collected from
published studies for antioxidant activity prediction model develop-
ment. Sixty-seven antioxidant dipeptides characterized by an ABTS
radical scavenging capacity assay and seventy-three dipeptides
characterized by an ORAC assay were collected as two separate
data sets (Supplementary Document 2), and the antioxidant activity
values are expressed as Trolox-equivalent antioxidant capacity (μmol
TE/μmol peptide).7,21−26

2.2. Data Processing. 2.2.1. Preprocessing of Numerical Indices
of Amino Acids. Among the 553 numerical indices, some of them are
highly correlated. It is necessary to remove those redundant features,
as they provide very limited information but increase model
complexity. Collinearity of the 553 numerical indices was prescreened
by pairwise correlation methods (Supplementary Documents 3 and
4). If an absolute value of Pearson’s correlation coefficient between
two indices was above 0.95, one of them was removed randomly due

to the strong correlation.27 The remaining numerical indices were
standardized for further feature selection.

2.2.2. Dipeptide Encoding and Feature Selection. The
prescreened numerical indices of amino acids were used to encode
dipeptides. Briefly, if the n numerical indices were selected after the
preprocessing, each amino acid was encoded as a 1 × n vector. Since
each dipeptide has two amino acid residues, it was encoded as a 2 × n
matrix, and then transformed into a 1 × 2n matrix, where the 1 to the
n elements in the vector belonged to the N-terminus residue and n +
1 to 2n elements belonged to the C-terminus residue. All of the
dipeptides were encoded again by the new features as X-matrix
(variables) and modeled with its corresponding antioxidant activity
values (Y-vector). After the encoding, each dipeptide was represented
by 2n variables.
Feature selection was used to further screen the important features

particularly for antioxidant activity prediction: therefore, significantly
simplifying the model complexity. In addition, it can also shed light on
the most important features contributing to antioxidant activity.4

These samples with 2n variables and corresponding Y-vector in each
activity data set were modeled by extreme gradient boosting
(XGboost) regression. Feature importance was calculated and used
to identify the key variables for antioxidant activity prediction.28

2.3. Model Development. 2.3.1. Data Set Division. Data sets
were shuffled and randomly split into a training data set and a test
data set at a 3:1 ratio. For the ABTS radical scavenging capacity data
set, 51 samples were used in the training data set for model building,
and the remaining 16 samples were used in the test data set to
evaluate the performance of the model. For the ORAC data set, the
numbers of samples in the training data set and test data set were 55
and 18, respectively.

Figure 1. Technical route for computer-aided approaches for virtually screening antioxidative dipeptides and application to sorghum proteins.
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2.3.2. Model Building, Optimization, and Evaluation. XGBoost
was employed to build a regression model based on the training data
set, and the parameters were tuned by leave-one-out cross-validation
(LOOCV). The hyperparameters with the best performance in
LOOCV were used as the final model for performance evaluation with
the test data set. The detailed codes for model development are
available in Supplementary Document 5. Model development was
performed using Python 3.8.8 (MacOS Monterey 12.0.1, CPU intel
Core-i5 2.3 GHz), and the related functions are available through
scikit-learn (https://scikit-learn.org/) and XGBoost (https://xgboost.
readthedocs.io/en/stable/).28,29

Coefficients of determination (R2) and mean square errors (MSE)
were used to evaluate the model performance. The R2 and MSE values
from the training data set, LOOCV, and test data set were labeled as
R2Train and MSETrain, R2CV and MSECV, and R2Test and MSETest,
respectively.

2.4. Prediction of Dipeptides with High Antioxidant
Activity. A data set containing 400 possible dipeptides with ABTS
radical scavenging capacity and ORAC was built, and the published 67
ABTS-associated dipeptides and 73 ORAC-associated dipeptides in
model building and validation were also included. After obtaining the
two prediction models, the 400 possible dipeptides were encoded by
the selected features, and then their antioxidant activities were
predicted (Supplementary Document 6).

2.5. Protein Cutting Simulation Tool Development. The
cleavage sites of 51 enzymes and chemicals were collected from
published studies and publicly available web servers such as
PeptideCutter.16,18,30 Functions for a total of 51 enzymes and
chemicals in the simulation tool were designed to obtain specific
cleavage sites in a given protein sequence, including Arg-C proteinase,
Asp-N endopeptidase, Asp-N endopeptidase + N-terminus Glu,
BNPS-Skatole, caspase1, caspase2, caspase3, caspase4, caspase5,
caspase6, caspase7, caspase8, caspase9, caspase10, chymotrypsin-
high specificity (C-term to [F Y W], not before P), chymotrypsin-low
specificity (C-term to [F Y W M L], not before P), clostripain
(clostridiopeptidase B), CNBr, enterokinase, factor Xa, formic acid,
glutamyl endopeptidase, granzymeB, hydroxylamine, iodosobenzoic
acid, LysC, neutrophil elastase, NTCB (2-nitro-5-thiocyanobenzoic
acid), pepsin (pH = 1.3), pepsin (pH > 2), proline-endopeptidase,
proteinase K, staphylococcal peptidase I, thermolysin, thrombin,
trypsin, elastase 1, elastase 2, chymotrypsinogen B1, chymotrypsi-
nogen C, pancreatic enteropeptidase E enteropeptidase, prostasin,
gastricsin, fruit bromelain, stem bromelain, ananain, papaya proteinase
4, chymopapain, chymosin, and caricain.16,18 All the detailed cleavage
sites of enzymes and chemicals are available in (Table S3 in
Supplementary Document 7).
Based on these designed functions, we developed a user-friendly

and well-annotated protein hydrolysis simulation tool, named
Refining-PeptideCutter (R-PeptideCutter), which takes the adding
sequence of enzymes or chemicals for hydrolysis into consideration.
Users will only need to download the fasta format files containing the
parent protein sequence from Uniprot, set enzymes or chemicals and
desired peptide length in R-PeptideCutter, and run the scripts. It will
automatically generate all the possible peptides encrypted in the
protein sequence as well as the number of peptides that can be
released. The detailed codes were written in Python and are available
in Supplementary Document 7. In addition, the R-PeptideCutter tool
was further tailored to link with the predicted antioxidant results from
the newly developed models, so that the antioxidant activity values of
the in-silico released peptides could be assigned. These codes can be
modified and used for studies of other bioactive peptides and are
available in Supplementary Document 7.

2.6. Application of Simulation Tool and Activity Prediction
Models in Kafirin Proteins. Eight available kafirin sequences were
selected from Uniprot (https://www.uniprot.org/) and used for
hydrolysis simulation, including three α-kafirin sequences, one β-
kafirin sequence, two γ-kafirin sequences, and two δ-kafirin sequences
(Table S1 in Supplementary Document 7). All of the downloaded
kafirin sequences were pretreated by removing the signal peptide from
the peptide sequences before further hydrolysis simulation. All of

these sequences were simulated to be hydrolyzed by one or a
combination of two enzymes or chemicals in order for all 51 enzymes
or chemicals. The predicted antioxidant activity values (ABTS radical
scavenging capacity and ORAC) of the generated peptides were
assigned, respectively (Supplementary Document 7).

2.7. Antioxidant Peptide Synthesis. Eight dipeptides present in
kafirin sequences were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The purity of these dipeptides was all above 95%. Taking into
consideration both peptide diversity and simulated hydrolysis results
with kafirin proteins, some peptides with low antioxidant activity
based on model prediction were also selected. These peptides (CG,
AY, YA, YF, GW, GG, GT, and GV) were used to validate the
performance of the constructed models.

2.8. Antioxidant Activity Assays. 1,1-Diphenyl-2-picrylhydrazyl
(DPPH), ABTS, fluorescein disodium (FL), and 2,2′-azobis(2-
methylpropionamide) dihydrochloride (AAPH) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). All of the chemicals and
reagents used were of analytical grade. In addition to the ABTS and
ORAC assays, we also conducted the DPPH assay, which can be used
for database building in future antioxidant-activity-related models. All
tests were conducted in triplicate.

2.8.1. ABTS Radical Scavenging Capacity Assay. The ABTS
radical scavenging capacity assay was conducted according to the
study of Zheng et al.7 Briefly, 150 μL of ABTS•+ solution was mixed
with 50 μL of dipeptide solution (10 μM) in a 96-well microplate.
After 30 min incubation at 30 °C, the absorbance was measured at
734 nm using a Biotek Synergy H1 Hybrid Microplate Reader
(Winooski, VT, USA). An equivalent volume of 50 mM phosphate
buffer (PBS) at pH 7.4 was used as the control, and the initial
absorbance at 734 nm was controlled at 0.70 ± 0.02. The dipeptide
solution was prepared in 75 mM PBS buffer (pH 7.4). Trolox (TE)
was used as a standard antioxidant, and results were expressed as μmol
TE/μmol peptide.

2.8.2. ORAC Assay. The ORAC assay was performed according to
the study of Zheng et al.7 A 20 μl portion of the dipeptide solution
(20 μM) and 60 μL of the FL solution (5 nM) were transferred in a
well of a 96-well microplate, and incubated for 15 min at 37 °C. Then
120 μL of a AAPH solution (80 mM) was mixed with the incubated
mixture in the plate for 30 s. A Biotek Synergy H1 Hybrid Microplate
Reader was used to record the fluorescence for 100 min at 485 nm for
excitation and 520 nm for emission, respectively. All of the dipeptide
solutions and FL and AAPH solutions were prepared in 75 mM PBS
buffer (pH 7.4). Trolox was used as a standard antioxidant, and the
ORAC values were also expressed as μmol TE/μmol peptide.

2.8.3. DPPH Radical Scavenging Capacity Assay. The DPPH
radical scavenging capacity assay was performed according to the
study of Chen et al., with some modifications.8 Briefly, 100 μL of a
dipeptide solution (20 μM) was mixed with 100 μL of a DPPH
solution (0.2 mM in 95% ethanol) in a 96-well microplate and then
incubated for 30 min at room temperature in the dark. The
absorbance was measured at 517 nm using a Biotek Synergy H1
Hybrid Microplate Reader (Winooski, VT, USA). The dipeptide
solution was prepared in 75 mM PBS buffer (pH 7.4). Trolox was
used as the standard antioxidant, and the results were expressed as
μmol TE/μmol peptide.

3. RESULTS AND DISCUSSION
3.1. Feature Importance Analysis. Eleven variables were

selected by XGBoost regression with a feature importance
threshold of 0.01 (Table 1) and then used to encode the 67
dipeptides with known ABTS radical scavenging capacity
values as the X-matrix (i.e., 67 × 11). Among them, 7 variables
were used to encode N-terminus residues, accounting for
0.8109 in feature importance for ABTS radical scavenging
capacity prediction, while the sum of the feature importance of
the remaining 4 variables representing C-terminus residues was
only 0.1087. LIFS790103 and CHAM820102 standing for
“conformational preference for antiparallel β strands” and “free
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energy of solution in water”, respectively, were the two most
important variables for ABTS radical scavenging capacity
prediction, and both were associated with N-terminus residues.
Similarly, 14 important variables for the 73 dipeptides with

known ORAC values were selected by the same feature
selection method employed for ABTS radical scavenging
capacity values (Table 2). The N-terminus residue was
represented by 7 variables, accounting for 0.6437 in feature
importance for ORAC prediction, while only 0.2449 in feature
importance stood for C-terminus with the same number of
representative variables as N-terminus. CHOP780215 (N-
terminus), PALJ810108 (N-terminus), and DESM900101(C-
terminus) standing for “frequency of the fourth residue in
turn”, “normalized frequency of α helix in α + β class”, and
“membrane preference for cytochrome b: MPH89” were the
three most important variables for ORAC activity prediction.
Feature importance of these variables in ABTS radical

scavenging capacity model development and ORAC model
development showed that N-terminus residues played a more
important role in antioxidant activity. In the study of Chen et
al.,8 the variable importance in projection (VIP) values
revealed that the C-terminus had greater contribution to the
ABTS radical scavenging capacity of tripeptides, and such an
observation was also confirmed in the study of Du et al.4 It is
interesting that antioxidant dipeptides showed a different
pattern where the importance of the N-terminus was greater
than that of the C-terminus. This is consistent with the VIP
values from the partial least-squares regression (PLSR) models
in Zheng et al., although they instead further emphasized the
importance of tyrosine and tryptophan at the N-terminus.7

Compared to ABTS radical scavenging capacity prediction, C-
terminus residues contributed more to ORAC prediction.
Among the selected variables, CHAM820102 and
YUTK870102 for N-terminus residues encoding in ABTS

radical scavenging capacity prediction were also selected in the
study of Chen et al. for a tripeptide’s ABTS radical scavenging
capacity prediction, which showed their generality in
antioxidant activity prediction.8 Previous studies on peptides
were mainly focused on the amino acid composition of
antioxidant peptides for the explanation of the antioxidant
activity (e.g., residue content of tyrosine).7−9,19,31,32

Some variables, such as LIFS790103, were selected in both
models. The feature importances of LIFS790103 were 0.4321
and 0.0819 for the ABTS radical scavenging capacity
corresponding model and ORAC corresponding model,
respectively. This might be due to the difference in
mechanisms between a single electron transfer (SET)
mechanism and hydrogen atom transfer (HAT) mechanism,
since ABTS and ORAC assays belong to SET and HAT
mechanisms, respectively.33 However, it should be mentioned
that some of the variables, such as LIFS790103 standing for
conformational preference for antiparallel β strands, were not
directly related to the antioxidant activity of dipeptides, since
there was no secondary structure in dipeptides. This issue
complicated the interpretation of models, which was also
indicated by other researchers for machine-learning applica-
tions.8,9 Compared to previous studies based on components
from principal component analysis (PCA) as the variables for
model development, our selected variables further clarified
specific variables associated with the antioxidant activity
instead of groups of variables and also enlarged the feature
source for peptide encoding.34−36 In addition, the selected

Table 1. Amino Acid Positions, Variable Importance, and
Description of Selected Variables by XGBoost Regression
for ABTS Radical Scavenging Capacity Data Set

accession no.
amino acid
position

variable
importancea description

LIFS790103 N-terminus 0.4321 conformational preference
for antiparallel β strands

CHAM820102 N-terminus 0.1647 free energy of solution in
water

PALJ810108 N-terminus 0.0834 normalized frequency of
α helix in α + β class

ARGP820102 N-terminus 0.0732 signal sequence helical
potential

KARS160122 N-terminus 0.0268 weighted second smallest
eigenvalue of the
weighted Laplacian
matrix

OOBM850103 N-terminus 0.0167 optimized transfer energy
parameter

YUTK870102 N-terminus 0.0139 unfolding Gibbs energy in
water, pH 9.0

CHAM830103 C-terminus 0.0419 no. of atoms in the side
chain labeled 1 + 1

MAXF760102 C-terminus 0.0281 normalized frequency of
extended structure

QIAN880119 C-terminus 0.0272 weights for β sheet at the
window position of −1

MCMT640101 C-terminus 0.0116 refractivity
aVariable importance is presented as absolute values. The detailed
information on these selected variables is available at https://www.
genome.jp/aaindex/.

Table 2. Amino Acid Positions, Variable Importance, and
Description of Selected Variables by XGBoost Regression
for ORAC Data Set

accession no.
amino acid
position

variable
importancea description

CHOP780215 N-terminus 0.2067 frequency of the fourth
residue in turn

PALJ810108 N-terminus 0.2046 normalized frequency of
α helix in α + β class

CHOP780205 N-terminus 0.0918 normalized frequency of
C-terminus helix

LIFS790103 N-terminus 0.0819 conformational preference
for antiparallel β strands

BIOV880102 N-terminus 0.0323 information value for
accessibility; average
fraction 23%

FODM020101 N-terminus 0.0153 propensity of amino acids
within π helices

BROC820102 N-terminus 0.0112 retention coefficient in
HFBA

CHOP780211 C-terminus 0.0557 normalized frequency of
C-terminus non-β region

BUNA790103 C-terminus 0.0244 spin−spin coupling
constants 3JHalpha-NH

QIAN880136 C-terminus 0.0181 weights for coil at the
window position of 3

PALJ810111 C-terminus 0.0122 Normalized frequency of
β sheet in α + β class

CHAM830105 C-terminus 0.0121 no. of atoms in the side
chain labeled 3 + 1

KARS160112 C-terminus 0.0119 second smallest eigenvalue
of the Laplacian matrix of
the graph

DESM900101 C-terminus 0.1105 membrane preference for
cytochrome b: MPH89

aVariable importance is presented as absolute values. The detailed
information on these selected variables is available at https://www.
genome.jp/aaindex/.
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variables from our study were more targeted and less
redundant compared with previous models adopting amino
acid descriptors (e.g., z scale in the study of Zheng et al.)
comprised of various weighted variables in combination, since
there are no amino acid descriptors specifically designed for
antioxidant activity.13,35,36 These findings provide alternative
ways for further theoretical and mechanism studies on
antioxidant peptides.9,19

3.2. Model Performance Evaluation. The relationships
between the observed activity and the predicted activity of
ABTS and ORAC models are shown in Figure 2a,b,
respectively. The R2CV and R2Test values for the ABTS and
ORAC prediction models were 0.7102/0.6082 and 0.5698/
0.5302, respectively. For the ABTS model, the predicted
activity was inclined to be lower than the observed activity. In
particular, the observed activity of around 2−4 μmol TE/μmol
peptide was predicted to be 1−2 μmol TE/μmol peptides. In
contrast, the predicted activity was much closer to the
observed activity in the ORAC model except for several
samples that showed a larger difference between the predicted
activity and the observed activity (e.g., the highest observed
activity sample).
Our model performances were substantial breakthroughs

compared to the previous study conducted by Zheng et al.,
where the best R2CV values, instead of R2Test, for ABTS radical
scavenging capacity and ORAC prediction were only 0.38 and
0.26, respectively, relying on a linear regression modeling
method (PLSR).7 Technically, R2CV could not describe the
model’s performance in an unknown data set because the data
used to obtain R2CV were used in model building.

9 In this
study, a much larger data set was collected from the latest
publications, and feature selection with nonlinear regression
modeling approaches was employed to link the data set and
antioxidant activity, which all contributed to the better
performance in test data sets.4,8,16,37,38

3.3. Prediction of Dipeptides with Potentially High
Antioxidant Activity from the Models. For ABTS radical
scavenging capacity prediction, dipeptides with a Y residue at

the N-terminus showed higher activity (3.37 μmol TE/μmol
peptide), followed by those with a W residue at the N-terminus
(Supplementary Document 6). For ORAC, dipeptides with a
W residue at the N-terminus showed higher activity (4.81
μmol TE/μmol peptide), and there was no obvious trend of
preferred residue in the N- or C-terminus for the remaining
high-activity dipeptides. The highlighted residues (W and Y)
agreed with other studies, where they were reported to be
strongly corresponding to high antioxidant activity of
peptides.7−9,19,31,32

3.4. Application of Simulation Tool and Antioxidant
Activity Prediction Models in Kafirin Proteins. The
kafirin protein sequences were cleaved in-silico by R-
PeptideCutter tool, and then the antioxidant activities of the
generated dipeptides were predicted by the ABTS radical
scavenging capacity and ORAC models, respectively. Among
these enzymes or chemicals, three enzymes, namely chymo-
trypsin C, proteinase K, and thermolysin, generated more
diverse dipeptides (more than 10 different dipeptides among
all these kafirin proteins) (Table S2 in Supplementary
Document 7). However, all these generated dipeptides were
predicted to have low antioxidant activity in both ABTS and
ORAC assays. The most diverse results were obtained from
A9XEC1 (α-kafirin B3), where 18 different dipeptides were
generated by thermolysin, and 17 and 14 different dipeptides
were from the hydrolysis with chymotrypsin C and proteinase
K, respectively (Table S2 in Supplementary Document 7).
Besides, both pepsin (pH = 1.3) and pepsin (pH > 2) released
six QQ dipeptides from the single α-kafirin sequence A9XEC1.
The theoretically generated dipeptide varied among the
enzymes due to the variation in enzyme cleavage sites and
protein sequences.16 For example, thermolysin can cleave
protein sequences when the P1 position is not D or E and the
P1′ position is A, F, I, L, M, or V. Both proteinase K (A, E, F, I,
L, T, V, W, or Y at P1) and chymotrypsin C (F, M, Y, W, L, N,
or Q at P1) have broad cleavage sites and therefore can
generate various dipeptides. Thermolysin cannot generate
dipeptides with a tyrosine, tryptophan, or cysteine at the N-

Figure 2. Relationship between observed and predicted antioxidant activities: (a) ABTS scavenging activity; (b) ORAC.
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terminus, which actually limits its application in antioxidant
dipeptide production. Both chymotrypsin C and proteinase K
could generate a dipeptide with tyrosine or tryptophan at the
C-terminus, but these preferable residues at N-terminus
depended on the sequence variation. Other enzymes, e.g.,
pepsin (pH = 1.3 or pH > 2), trypsin, chymotrypsin B1, and
chymotrypsin (low or high specificity) also had broad cleavage
sites, but the diversity was not comparable to that of the three
enzymes which resulted from the sequences. Also, these
enzymes might suffer from the broad cleavage sites, since this
might lead to more residues released as free amino acids
instead of peptides.
When two enzymes or chemicals are combined to generate

dipeptides, there are 2601 different combinations from the 51
available enzyme or chemical simulations. Overall, there are
many additional dipeptides generated from two enzymes/
chemicals compared to the hydrolysis with a single enzyme or
chemical (Table S2 in Supplementary Document 7). The best
way to increase the diversity of the dipeptides was to combine
one enzyme with broad cleavage sites and one with highly
specific sites. The dipeptide diversity (12 dipeptides)
generated by the combination of pepsin (pH = 1.3) and
neutrophil elastase in Q9XE78 (α-kafirin) was at least twice
the number of dipeptides from pepsin (pH = 1.3) (2
dipeptides) or neutrophil elastase (5 dipeptides) alone
(Table S2 in Supplementary Document 7). This combination
also released a highly potent antioxidant dipeptide, YR, where
the ABTS radical scavenging activity and ORAC values were
3.352 and 2.099 μmol TE/μmol peptide, respectively.
Furthermore, this dipeptide cannot be produced by a single-
enzyme process.
It should be noted that there was no enzyme that could

recognize a cysteine residue occurring at the P1 or P1′ position
except for using chemicals such as NTCB, which can break the
peptide bonds with cystine at the P1′ position. Therefore, it
would be more challenging to produce cysteine-containing
dipeptides from food proteins, and this only occurs occasion-
ally. For example, papaya proteinase can break the peptide
bonds with a glycine residue at the P1 position. Therefore,
when there is a cysteine residue at the P1′ position, it is
possible to generate cysteine-containing dipeptides. Among the
selected kafirin sequences, G3FMW5 and Q6Q299 were
observed to generate a dipeptide (CG) with papaya proteinase.
The R-PeptideCutter has the generality to be used in any

protein sequences for peptide cutting simulation and can
generate all possible peptides with any length (Supplementary
Document 7). Overall, the diversity of the total possible
dipeptides generated by two enzymes or chemicals was
significantly higher, and some of the dipeptides (e.g., YR)
were exclusively generated when combining two enzymes,
which could not be achieved when using an individual enzyme
or chemical.16 The predicted antioxidant activity of the
generated peptides hydrolyzed by different enzymes or
chemicals could be used to guide wet chemistry for other
studies on sorghum protein-derived antioxidant dipeptides.

3.5. Antioxidant Activity Model Validation Using
Synthesized Dipeptides. The ABTS radical scavenging
capacity, ORAC, and DPPH radical scavenging capacity of
eight synthetic dipeptides are shown in Figure 3. For ABTS
radical scavenging capacity, YA exhibited the highest capacity
(6.50 μmol TE/μmol peptide), while AY (2.19 μmol TE/μmol
peptide) with the same amino acid residue composition only
showed one-third the capacity of YA. Besides, YF as the second

strongest dipeptide also exhibited competitive activity (5.62
μmol TE/μmol peptide). For ORAC, GW showed the highest
activity (3.49 μmol TE/μmol peptide), while only AY, YA, and
YF exhibited some ORAC activity among the remaining
synthesized dipeptides. Regarding DPPH radical scavenging
capacity, the trend was comparable to that in ORAC. The only
exception was that the antioxidant capacity of YA (1.46 μmol
TE/μmol peptide) was similar to that of GW (1.49 μmol TE/
μmol peptide).
The ABTS radical scavenging capacity of the synthetic

dipeptides (CG, AY, YA, YF, GW) was underestimated, which
was observed in the corresponding ABTS model development
and was also consistent with an antioxidant tripeptide
modeling study.8 The ABTS radical scavenging capacity of
YA was significantly higher than that of AY, even though they
had the same amino acid composition and length. This is
consistent with the feature importance results, which showed
that the N-terminus residue was more important and Y had
been proven to be more favorable at the N-terminus compared
to A.7,31 The ORAC model achieved a better activity
prediction in YA, AY, and GW, where the observed/predicted
activited were 1.11/1.16, 1.23/1.13, and 3.48/3.49 μmol TE/
μmol peptide, respectively, which showed great prediction
performance. In the ORAC prediction, the capacity of YA was
only predicted to be slightly higher than that of AY, while GW
exhibited approximately triple the activity of YA. The result
implied that the amino acid residue Y was not as important as
in the ABTS radical scavenging capacity model, while the W
residue was more favorable to ORAC, even at the C-terminus.7

However, dipeptides GG, GT, and GV barely showed any
antioxidant activity, although they were predicted to have weak
antioxidant capacity. The findings indicated that the models
were not suitable for predicting the nonantioxidative peptides.
Although the mechanism of DPPH radical scavenging capacity
was based on both SET and HAT mechanisms, a high DPPH
radical scavenging capacity was more in agreement with the
HAT mechanism, where W played a more important role in
antioxidant activity (Figure 3).33

In summary, we successfully developed prediction models
for dipeptide antioxidant activity by an XGboost regression
method plus other machine-learning methods with the latest

Figure 3. Antioxidant activities of different synthetic dipeptides
determined by ABTS, ORAC, and reducing power assays. CG, AY,
YA, YF, GW, GG, GT, and GV refer to the dipeptides Cys-Gly, Ala-
Tyr, Tyr-Ala, Tyr-Phe, Gly-Trp, Gly-Gly, Gly-Thr, and Gly-Val,
respectively.
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data set of antioxidant dipeptides with ABTS radical
scavenging capacities and ORAC values. The results showed
that N-terminus residues played more important roles in the
antioxidant activity of dipeptides. Specifically, a Y residue at
the N-terminus and a W residue at the N-terminus strongly
corresponded to high activity in ABTS radical scavenging
capacity and ORAC, respectively. The model performance was
significantly improved compared to the previous studies on
peptide antioxidant activity prediction. A well-designed and
user-friendly protein hydrolysis simulation tool, R-Pepttide-
Cutter, was developed and released. Application of R-
PeptideCutter and the models on sorghum protein revealed
the dipeptide (YR) encrypted in the kafirin protein sequence
(Q9XE78) had potentially the highest antioxidant activity, and
the enzymes that could be used to release the dipeptide were
also targeted. Eight dipeptides derived from the kafirin protein
cutting simulation were synthesized and evaluated for their
antioxidant activity, and they were used to validate the model
performance. The corresponding ORAC model achieved
greater prediction performance, while the corresponding
ABTS radical scavenging capacity model underestimated the
activity prediction, although both models exhibited inadapt-
ability for dipeptides with low activity or nonactivity
prediction. The developed models and R-PeptideCutter are
capable of being applied to all proteins and identifying
bioactive dipeptides released from natural proteins. In
addition, the selected variables in model development offer
alternative ways to elucidate the key features that determine
bioactivity.
There are still some challenges from this study that require

further research. Even though there are significant improve-
ments for the newly developed hydrolysis simulation tool, a
gap between in-silico simulation and experimental results still
exists. Bridging the gap will be crucial for the rational design of
protein hydrolysates for practical uses. More relevant and
straightforward features are needed to encode peptides and
amino acids for better QSAR model development and an
understanding of the key factors contributing to the
antioxidant activity. In addition, the current peptide feature
encoding is limited by the peptide length: i.e., dipeptides only.
Global descriptors, which characterize peptides as a whole
during encoding and can be applied to peptides of any length,
are a promising alternative approach to enlarge data sets and
build more robust QSAR models.
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