Insect Numbers in Traps and Product Samples Before and After Heat Treatment

Andy Allen

Graduate Research Assistant Department of Grain Science and Industry Kansas State University

I. Methods to Assess Heat Treatment Effectiveness

A. Test Cages

- 1. Known numbers of an economically-damaging stored-product insect
- 2. Placed in commonly infested areas, or locations where heat may have difficulty reaching

Advantages:

- a. Data is useful and easily interpreted
- Bug Chek cages (LSB Product, Manhattan, Kansas) are compact to allow insertion into equipment or small structural spaces.

Continue test cages

Disadvantages:

a. How many test cages are needed for a thorough assessment of the treatment?
 Rule of thumb is useful, but each facility is different and requires varying numbers of test cages.

b. Where should cages be placed?

A manager with more experience about his/her facility's "problem areas" would better be able to answer this question. For a manager to acquire this experience, sufficient temperature monitoring of a previous heat treatment would need to be conducted.

B. Trap Sampling

- 1. Indirect sampling method
- 2. Food and pheromone baited traps
- 3. Assessing food facility fumigations and heat treatments
- 4. Rennie et. al. (Trap catches of stored-product insects before and after heat treatment in a pilot feed mill) used two-way analysis of variance for trap analysis
- 5. Hot spots (Surfer, Golden Software)

Continue trap sampling

Advantages:

- 1. Presence of viable insects
- 2. Proportion of insects found
- 3. Assessment of facility treatments
- 4. Insect hot spots

Disadvantages:

- 1. Surrounding food sources
- 2. Initial investment in traps, lures, and time
- 3. Regular costs; lure replacement and monitoring
- 4. Interpretation

C. Commodity Sampling

- 1. Direct sampling method
- 2. Finished products, ingredients, product streams, and residual patches residing on equipment, floors, and structural surfaces

Advantages:

- 1. More accurate assessment of insect proportions
- 2. Validates insect hot spots

Disadvantages:

- 1. Time consuming
- 2. Representative sampling
- 3. Costly due to damaged packages, and the time required for sampling and processing

D. Heat Treatment Assessments Using Trap and Product Samples DOME **Materials and Methods** -

Trap Sampling

- a. June 02' to January 03' at KSU pilot mill
- b. 85-dome traps (Trécé), CFB/RFB aggregated pheromone lures, and food oil
- c. 85-Pherocon II (Trécé) traps and IMM sex pheromone lures
- d. Traps were paired and placed in a grid fashion on each floor
- e. Ten trap pairs/floor were used except the flour mill sub-basement, which used five trap pairs
- f. Checked weekly and reported as mean number of insects/trap/floor/week

Continue materials and methods

<u>Commodity Samples</u>

- a. Spouts, equipment, floor, and structural surfaces
- b. Mean sample sizes of 20.49 grams
- Samples were weighed, sieved for live adults, and placed in the incubation chamber for six weeks at 32°C
- d. After incubation, samples were re-sieved
- e. Collected as often as traps
- f. Reported as the mean number of insects/gram/floor/week

Slope Comparison-Traps

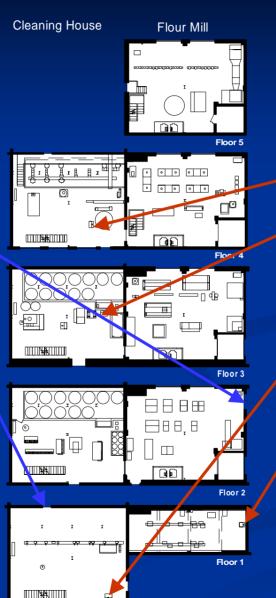
- 1. Weekly red flour beetle (RFB) capture data was partitioned into four segments
- 2. Segmented: 19-Aug-02, 17-Oct- 02, and 26-Nov-02
 - e.g. Segment 1 data is between the start of the experiment (2-Jun-02) and the first heat treatment (19-Aug-02) and segment 2 is between the first and the second heat treatment etc...
- 3. Mean insects captured for each segment were cumulated
- 4. A linear model was fit for each segment
- 5. The x-axis=week and y-axis=mean cumulative insects/trap/floor/week

Continue Slope Comparison

6. A slope comparison model was used to compare the slopes between the three heat treatments

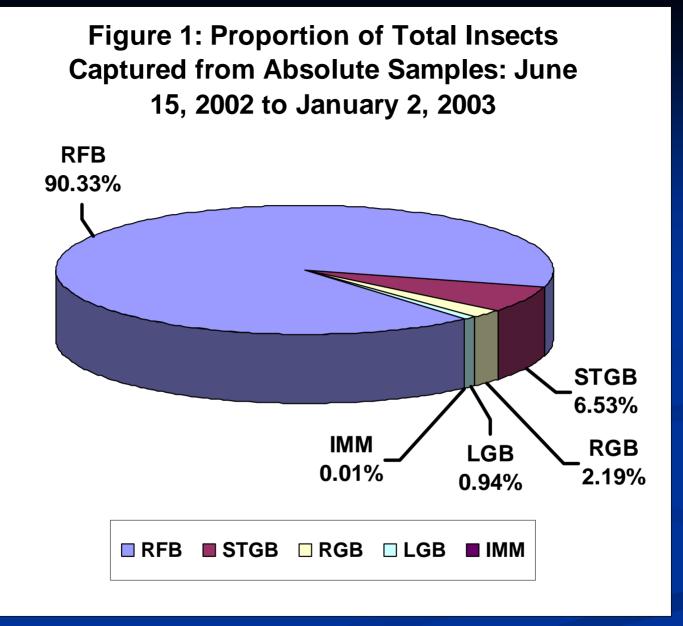
Analysis of Variance-Commodity Samples

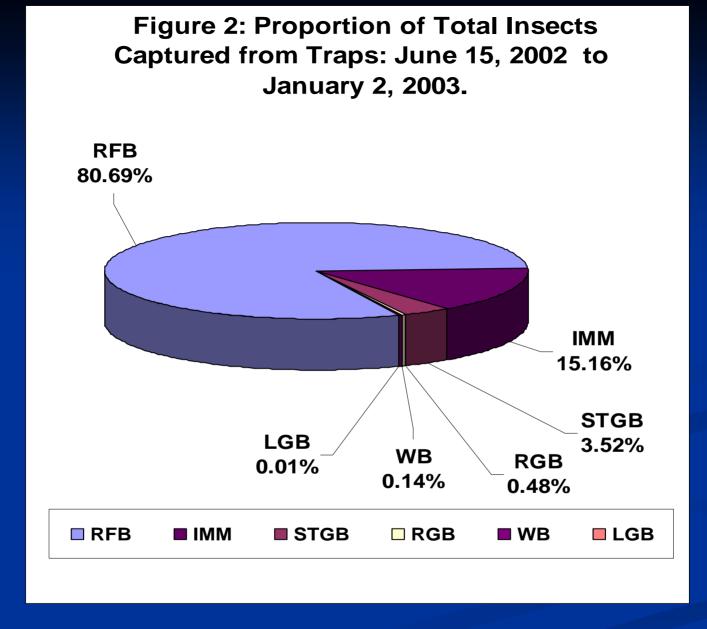
- 1. Transformed data to log scale
- 2. Two-way analysis of variance (ANOVA)
- 3. Determined the significant difference in the mean number of insects/gram/floor/week before and after each heat treatment (alpha<0.05)


Heat Treatments

19-Aug-02

19-Aug-02





RFB= red flour beetle, STGB= sawtoothed grain beetle, RGB=rusty grain beetle, LGB=lesser grain borer, & IMM= Indianmeal moth

RFB= red flour beetle, STGB= sawtoothed grain beetle, RGB=rusty grain beetle, LGB=lesser grain borer, IMM= Indianmeal moth, & WB= warehouse beetle

Figure 3: Slope Comparisons Between the Mean Cumulative Trap Captures of Red Flour Beetles (RFB) Before and After the Heat Treatments

			Comparison Results		lesults	Slo	oes	
Building ^a	Floor	Treatment ^b	Tc	DF ^d	P ^e	Before	After	% Reduction ^f
СН	1	1	2.714	15	0.008	12.522	8.458	32.45
		2	13.988	10	<0.001	8.458	3.417	59.60
		3	9.027	6	<0.001	3.417	0.436	87.24
CH	2	1	4.970	15	<0.001	4.936	2.690	45.50
		2	11.504	10	<0.001	2.690	0.481	82.12
		3	6.783	6	<0.001	0.481	0.152	68.40
CH	3		6.200	15	<0.001	4.057	2.651	34.66
		2	5.795	10	<0.001	2.651	1.289	51.38
		3	3.514	6	<0.006	1.289	0.229	82.23
CH	4	1	5.966	15	<0.001	4.130	2.100	49.15
		2	4.714	10	<0.001	2.100	1.179	43.86
		3	3.805	6	<0.004	1.179	0.217	81.59
FM			8.006	15	<0.001	2.402	7.765	h —
		2	12.520	10	<0.001	7.765	0.734	90.55
		3 ^g						
FM	2	1	14.311	15	<0.001	1.650	7.453	h —
		2	11.808	10	<0.001	7.453	0.354	95.25
		3	6.871	6	<0.001	0.354	0.115	67.51
FM	3		1.657	15	0.059	1.525	1.956	h —
		2	16.941	10	<0.001	1.956	0.536	72.60
		3 ^g						
FM	4	1	0.980	15	0.171	2.886	2.534	12.20
		2	5.663	10	<0.001	2.534	0.220	91.32
	_	3	2.434	6	<0.025	0.220	0.031	85.91
FM	5		2.717	15	0.008	2.495	1.831	26.61
		2	5.212	10	<0.001	1.831	0.288	84.27
		3	2.622	6	0.020	0.288	0.031	89.24

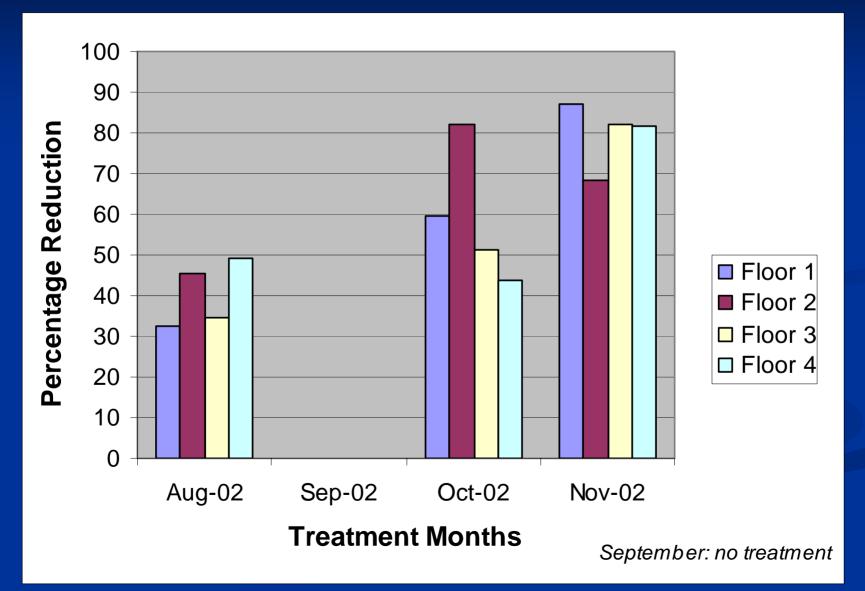
^a CH=cleaning house and FM=flour mill.

^b The numbers 1, 2, and 3 are related to three heat treatments occurring on

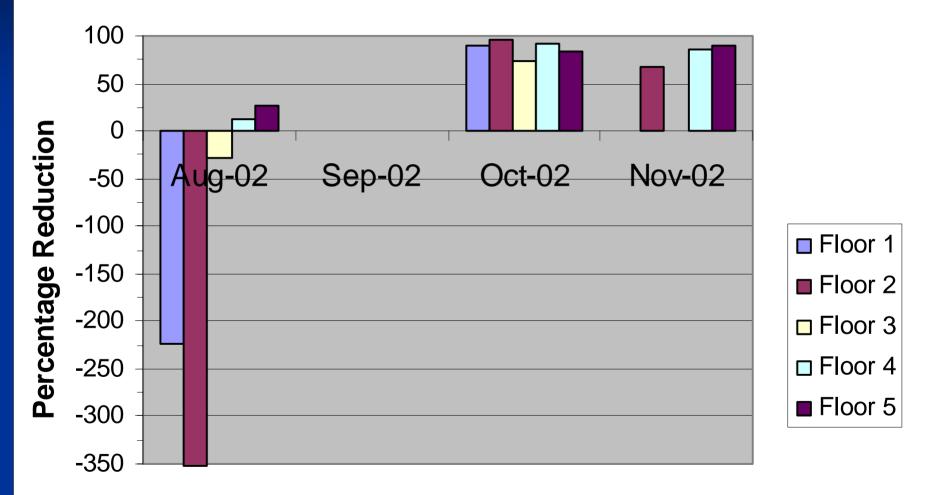
19-Aug-02, 17-Oct-02, 26-Nov-02, respectively.

^c T=test statistic using the t-distribution.

^d DF=degrees of freedom.


^e P=p-value.

^f % reduction=(1-after treatment slope/before treatment slope)*100.


^g Linear model had a $r^2 < 0.79$

h Increase in insect numbers

Figure 4: Percentage Reduction in Mean RFB Trap Captures in the Cleaning House for the Three Heat Treatments

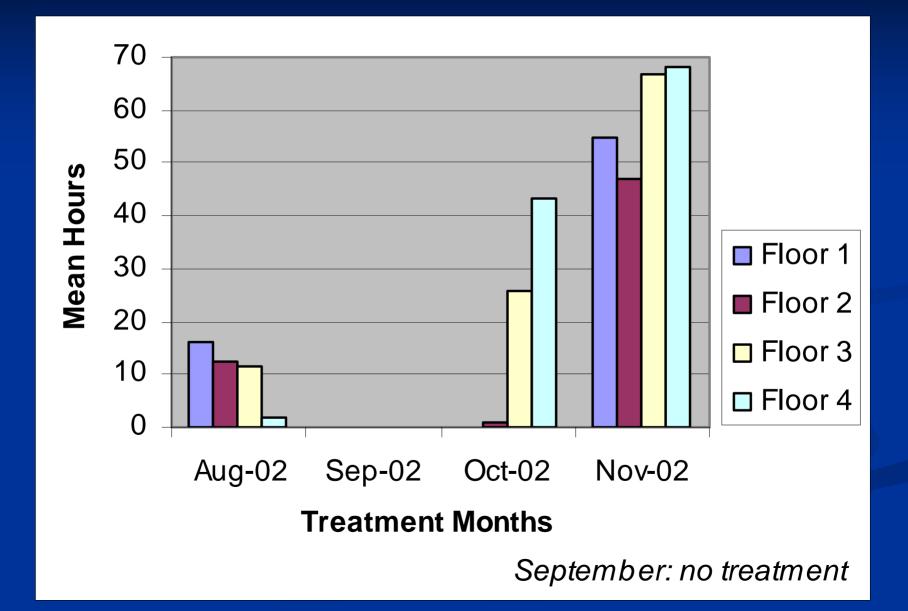
Figure 5: Percentage Reduction in Mean RFB Trap Captures in the Flour Mill for the Three Heat Treatments

Treatment Months

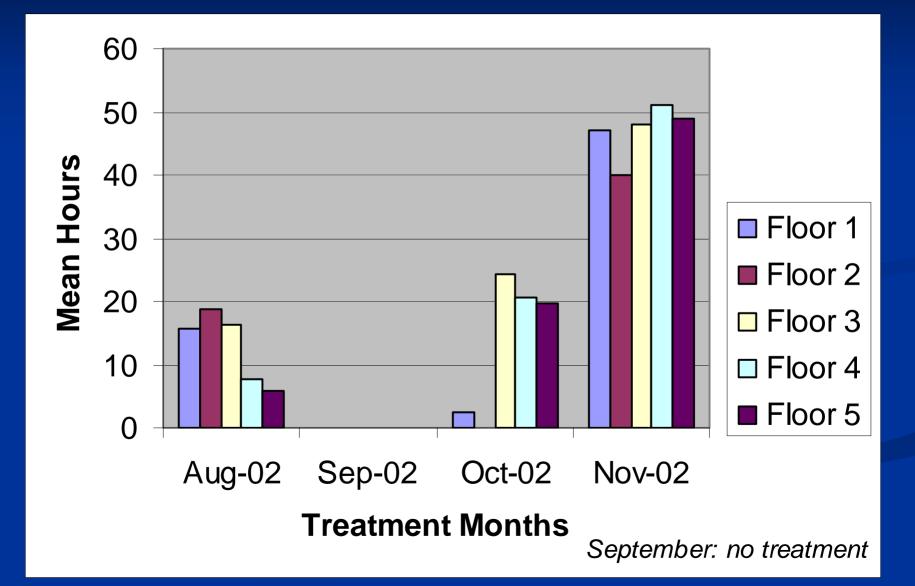
September: no treatment

Figure 6: Mean Temperature Profiles Between Floors of the KSU Pilot Mill During Aug. 19-20, Oct. 17-20, and Nov. 26-30, 2002 Heat Treatments

			Hobos	Hobos not	Mean Temperature (°C)		Mean hours	Rate of	Mean hours
Building ^a	Date	Floor	per floor	reaching 50⁰C	Start	Max	to reach 50⁰C	increase (⁰C/h) ^b	above 50°C
CH	19-Aug-02	1	9	3	30.19	56.50	5.64	3.51	16.14
		2	7	0	31.82	57.73	12.52	1.45	12.40
		3	7		32.00	54.37	13.14	1.37	11.59
		4	8	5	31.23	47.92	26.00	0.72	1.67
FM	19-Aug-02		5	0	27.99	58.25	11.43	1.93	15.83
		2	7	1	27.86	57.21	9.25	2.39	18.91
		3	5	0	29.74	57.70	13.97	1.45	16.36
		4	7	1	30.45	55.27	20.28	0.96	7.55
		5	6		30.04	51.86	17.40	1.15	5.70
СН	17-Oct-02	1	4	3	23.89	47.22	с 	с 	с
		2	4	3	23.45	50.11	72.29	0.37	0.71
		3	4	0	24.44	54.00	47.40	0.54	25.60
		4	4	0	22.67	59.11	29.58	0.92	43.42
FM	17-Oct-02	1	5	2	26.11	50.83	70.63	0.34	2.37
		2	5	2	23.19	46.95			с
		3	5	0	22.09	56.81	48.72	0.57	24.28
		4	5	0	19.58	55.70	52.50	0.58	20.50
		5	5	0	18.19	54.59	53.23	0.60	19.77
СН	26-Nov-02			0	21.33	58.58	36.00	0.80	55.00
		2	1	0	22.48	57.89	44.00	0.63	47.00
		3	1	0	22.09	67.42	24.00	1.16	67.00
		4	1	0	18.28	65.01	23.00	1.38	68.00
FM	26-Nov-02	1	1	0	20.57	55.35	44.00	0.67	47.00
		2	1	0	21.33	56.60	51.00	0.56	40.00
		3	1	0	19.42	61.29	43.00	0.71	48.00
		4	1	0	16.76	61.29	40.00	0.83	51.00
		5	1	0	16.38	61.29	42.00	0.80	49.00


^a FM=Flour Mill CH=Cleaning House

^b Rate of increase from the ambient air to the target air temperature of 50°C was calculated as:


(50-mean starting temperature)/mean hours to reach 50°C.

° Did not reach 50°C

Figure 7: Mean Hours Above 50°C in the Cleaning House

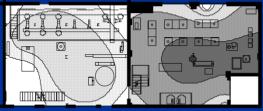


Figure 8: Mean Hours Above 50°C in the Flour Mill

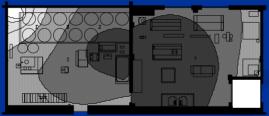
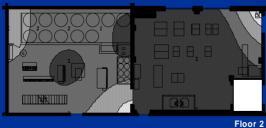
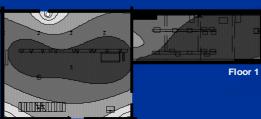


Figure 9: Time (hrs.) Above 50°C in Pilot Flour Mill During the 19-Aug-02 Heat Treatment Cleaning House Flour Mill



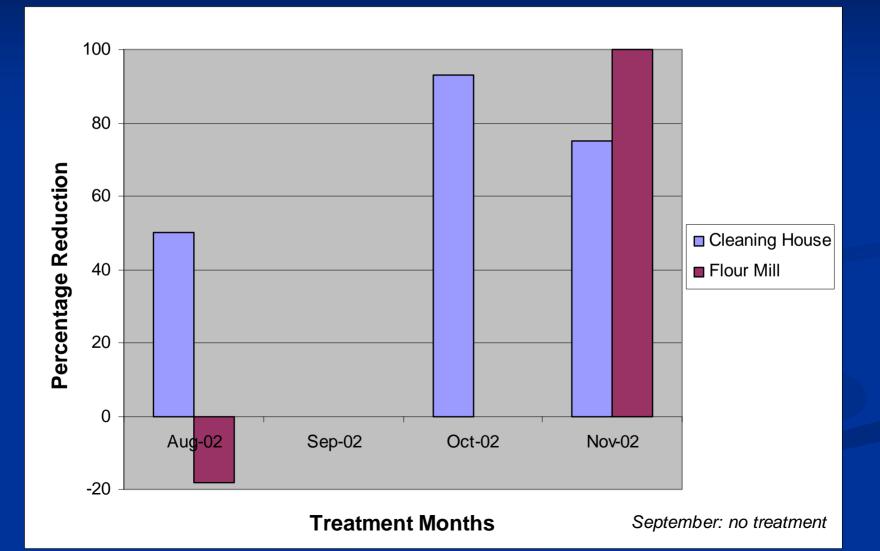


Floor 4

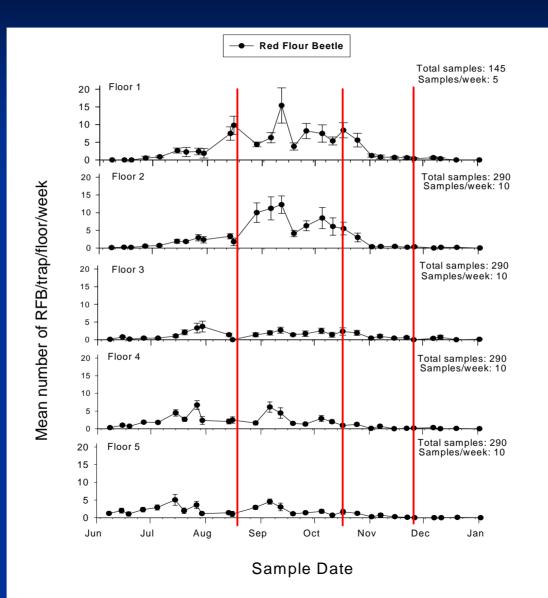
Floor 3

0.5

Figure 10: Product Sample Results using Analysis of Variance


Building ^a	Date	Date ^b		Floor		Date x Floor		Mean <u>+</u> SE [°]		% Reduction
		F	Р	F	Р	F	Р	Before	After	
CH	19-Aug-02	0.22	0.643	3.41	0.035	0.66	0.584	0.18 <u>+</u> 0.13	0.09 <u>+</u> 0.05	50.00
FM	19-Aug-02	0.52	0.476	1.99	0.125	1.33	0.285	0.11 <u>+</u> 0.03	0.13 <u>+</u> 0.05	d
СН	17-Oct-02	2.23	0.152	2.65	0.079	1.48	0.251	0.29 <u>+</u> 0.13	0.02 <u>+</u> 0.02	93.10
FM	17-Oct-02	0.29	0.597	1.93	0.145	0.20	0.937	0.09 <u>+</u> 0.03	0.09 <u>+</u> 0.09	0.00
CH	26-Nov-02	0.23	0.636	1.23	0.317	0.26	0.852	0.04 <u>+</u> 0.04	0.01 <u>+</u> 0.01	75.00
FM	26-Nov-02	3.17	0.084	1.16	0.346	1.16	0.346	0.01 <u>+</u> 0.00	0.00 <u>+</u> 0.00	100.00

^a FM=Flour Mill, CH=Cleanining House


^c Comparison of product samples collected before and after each heat treatment; Aug. 16, (before) with samples on Aug. 28, 2002 (after); Oct. 12, (before) with samples on Oct. 24, 2002 (after); Nov. 26 (before) with samples on Dec. 7, 20 ^d Mean number of insects/floor/week/gram.

^d There is an increase in insects found in product samples after treatment.

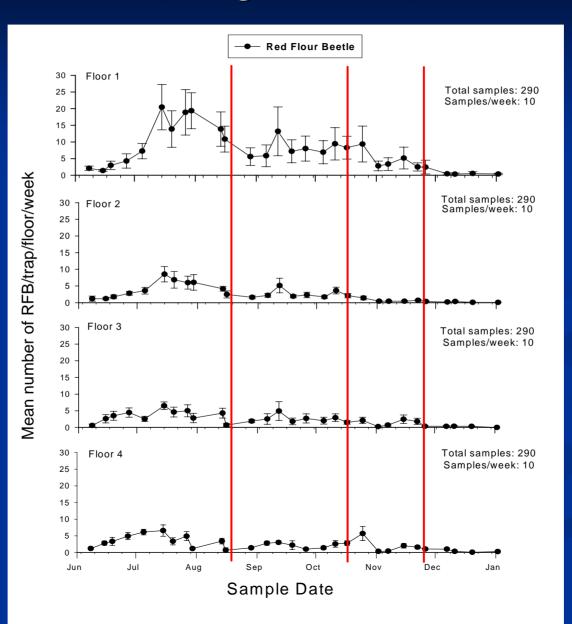

Figure 11: Percentage Reduction in Insect numbers for Product Samples

Figure 12: Mean RFB Trap Captures on all Flour Mill Floors Heat treatments; 19-Aug-02, 17-Oct-02, and 26-Nov-02

Figure 13: Mean RFB Trap Captures on all Cleaning House Floors Heat treatments; 19-Aug-02, 17-Oct-02, and 26-Nov-02

Figure 14: Heat Treatment Results

	19-Aug-02		17-00	ct-02	26-Nov-02	
	C-House	Flour Mill	C-House	Flour Mill	C-House	Flour Mill
Slope Comparisons						
Significant difference	All floors	Floors 1,2, & 5	All floors	All floors	All floors	Floors 2,4,&5
Reduction in insect numbers	All floors	Floors 4 & 5	All floors	All floors	All floors	Floors 2,4,&5
% reduction range	32.45 - 49.15%	0.00 - 26.61%	43.86 - 82.12%	72.60 - 95.25%	68.40 - 87.24%	67.51-89.24%
Floors with r ² <0.79	None	None	None	None	None	Floors 1 & 3
Analysis of Variance						
Significant differences	Between floors	None	None	None	None	None
% reduction	50%	Increase	93.10%	0%	75%	100%
Temperature Profiles						
Range of mean hrs. above 50°C	1.67 - 16.14 hr	5.70 - 18.91 hr	0.71 - 43.42 hr	2.37 - 24.28 hr	47.00-68.00 hr	40.00-51.00 hr
Range of mean hrs. to 50°C	5.64 - 26.00 hr	9.25 - 20.28 hr	29.58 - 72.29 hr	52.50 - 70.63 hr	23.00 - 44.00 hr	40.00-51.00 hr
Floors not reaching 50°C	None	None	Floor 1	Floor 2	None	None
Insect Rebound (Avg. wks)						
Traps	1	0.6	increase-fl.1,3,&4	No rebound	No rebound	No rebound
			no rebound -fl. 2			

Discussion A. 19-Aug-02 Treatment

- 1. Whole mill, 1.67 18.91 hours above 50°C
- 2. C-house treatment appeared more affective than the mill, due to significant differences and higher % reduction values
- 3. Flour mill: floors 1, 2, & 3 had increased trap captures
- 4. Insect numbers rebounded after 1 wk. in C-house and 0.6 wk. in flour mill
- 5. Heat treatment was unsuccessful due to length of treatment

Continue Discussion

B. 17-Oct-02 Heat Treatment

- 1. Whole mill, 0.71 43.42 hrs. above 50°C
- 2. The first two floors of both facilities had difficulty reaching 50°C
- 3. Based on slope analysis, % reductions were slightly higher for the mill
- 4. ANOVA analysis showed the C-house had the highest % reduction with the mill showing no change <u>low insect numbers/representative</u>
- 5. C-house floors 1, 3, & 4 had slight increases in trap captures after treatment
- 6. Based primarily on trapping results, this treatment provided a sufficient knock down

Continue Discussion

- C. 26-Nov-02 Heat Treatment
 - 1. Whole mill, 40.00 68.00 hrs. above 50°C
 - 2. Low trap captures before treatment made analysis more difficult for mill floors 1 & 3
 - 3. Slope comparisons: floors 4 & 5 had high % reductions and floor 2 had the lowest
 - 3. Product samples also had large % reductions, which were between 75 and 100%
 - 4. Insect numbers did not rebound
 - 5. Treatment was not necessary, but it was still successful

Conclusion

Steps for Heat Treatment Assessment

- 1. Determine insect monitoring method
- 2. Conduct sampling immediately before treatment
- 3. Thoroughly monitor temperature throughout the facility
- 4. Sample immediately after treatment
- 5. Collect data
- 6. Analysis
 - a. Slope comparison-traps
 - b. Analysis of variance-traps or product
 - c. Temperature profiles
 - d. Insect Rebound
- 7. Interpret Results

Future Research

Insect behavior
Trap interpretation
Improve trap efficiency-design

Relate insect density to rebolt tailings