Temperature Treatments for Postkarvest Dried Fruits and Nuts

e Fe

Judy Johnson USDA-ARS-SJVASC Parlier, California

Commodity Protection and Quarantine Insects Research

Control of postharvest insects is critical to the large and diverse dried fruit and nut industry.

Processors rely heavily on chemical fumigants for postharvest insect control.

Temperature treatments are potential alternatives.

Several dried fruit and nut crops are produced in the Central Valley of California, storage methods vary widely, from outdoor storage...

Covered almond piles

... to warehouse storage and large silos.

Dried fruit warehouse

Walnut silos

Almond silos

Drying methods range from sun-drying to mechanical, forced hot air dehydrators...

> ...and cold storage is often used to preserve product quality.

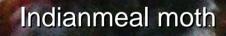
Sun-drying natural raisins

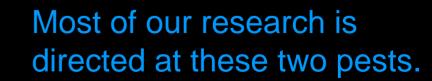
Commodity Protection and Quarantine Insects Research

Walnut dehydrator

Insects of concern are of two broad types...

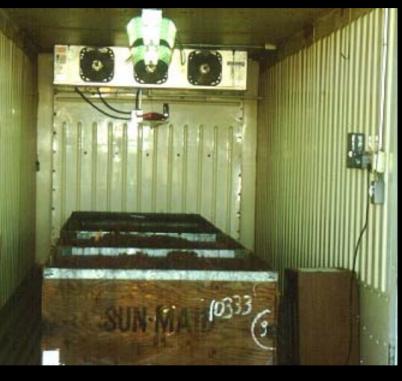
Direct field pests


Stored product pests


...regardless, tolerance for live insects at the consumer level is zero.

The two major insect pests for these products...

Navel orangeworm



Our major research effort...

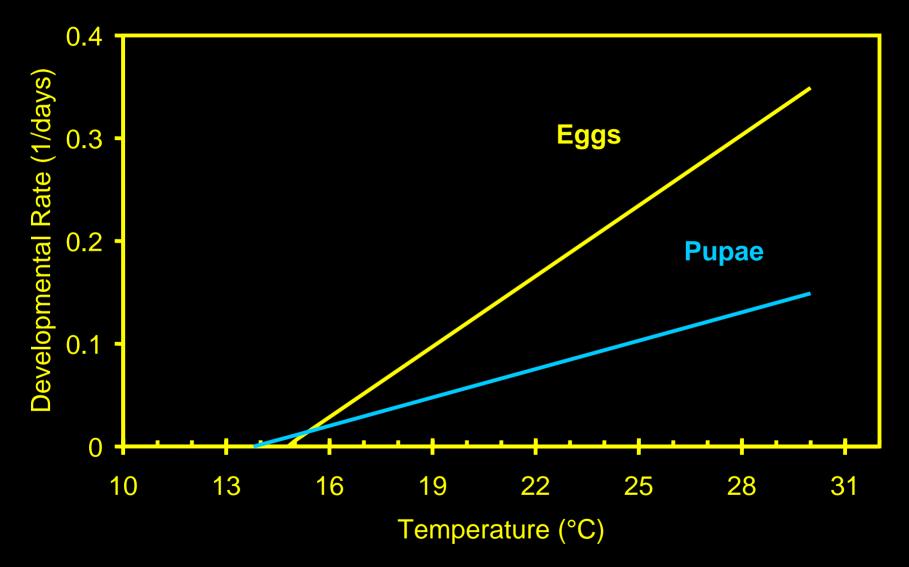
Use of low temperatures

High temperature radio frequency treatments

Low Temperature

♦Using temperatures of 0-10°C

First object is to prevent infestation.


For some life stages, long exposures are needed for disinfestation

 Some commodities are routinely stored at low temperatures to maintain quality

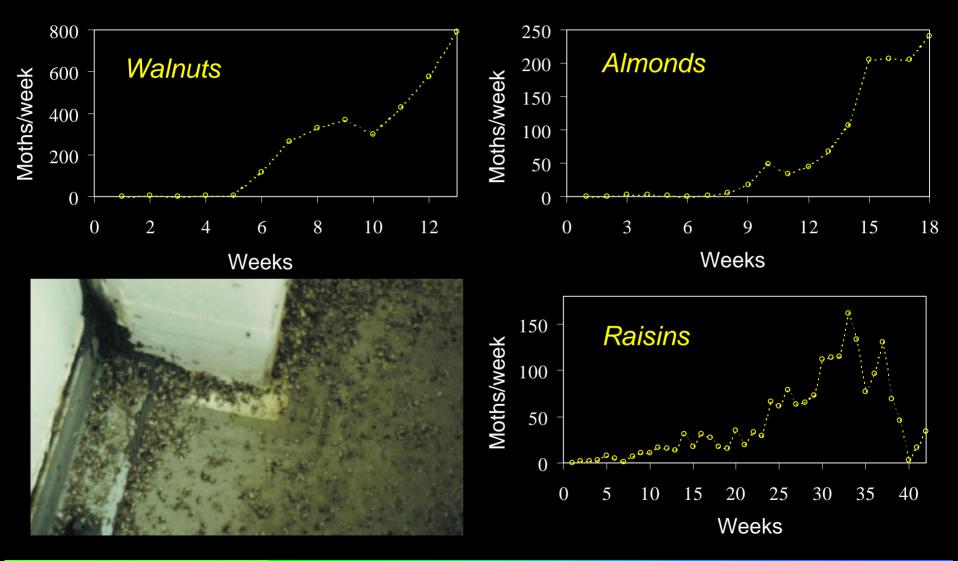
Developmental thresholds for Indianmeal moth

Use of Cold Storage in Combination Treatments

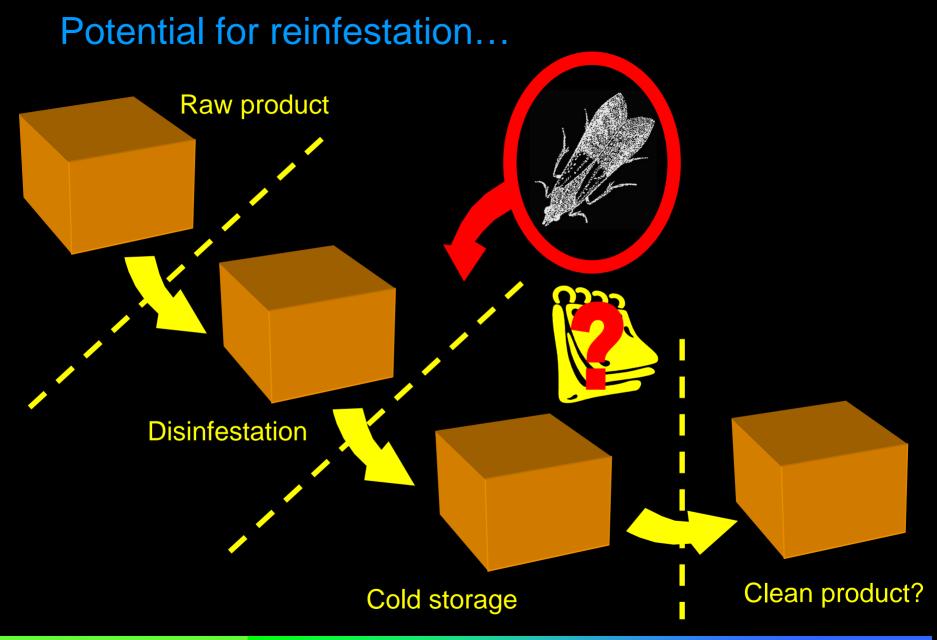
Raw, infested product

Disinfestation (Processing Step or Treatment)

Clean product protected from reinfestation by cold storage


Commodity Protection and

Cold storage protection against Indianmeal moth infestation in walnuts, almonds and raisins was tested.



Indianmeal moth trap results for combination treatments

Commo

Adult Indianmeal moth mortality at 10°C

Exposure (days)	Females	Males
7	4.9	5.9
35	15.0	23.9
70	94.9	92.6
98	100.0	99.8

Indianmeal moth fertility after 30 day exposure to 10°C

Female Condition	Eggs/female	% hatch
Untreated	369.8	85.3
Mated before exposure	152.8	0
Mated after exposure	140.4	5.3

LT95 (days) for insect eggs at low temperatures

Target Insect	10°C	5°C	0°C
Indianmeal moth	11.6	9.8	7.7
Navel orangeworm	9.1	7.1	2.8

Larval and pupal survival at 10°C

Exposure	IM	M	NC)W
(days)	Larvae	Pupae	Larvae	Pupae
0	96.9	90.0	98.0	84.4
12	78.6	17.8	92.3	28.9
19	85.5	6.2	82.0	15.6
26	87.0	7.1	70.1	1.8
33	83.0	0.0	60.4	0.0
40	79.1	0.0	51.3	0.0

Commodity Protection and Quarantine Insects Research

Larval and pupal survival at 5°C

Exposure	IM	IM	NC	W
(days)	Larvae	Pupae	Larvae	Pupae
0	88.7	89.6	92.0	90.6
5	72.7	61.6	28.0	79.8
10	28.0	32.0	1.3	58.7
15	16.0	17.2	0.7	26.7
20	13.3	1.4	0.0	0.0
25	1.3	0.0	0.0	0.0

Commodity Protection and Quarantine Insects Research

Larval and pupal survival at 0°C

Exposure	IM	M	NC	DW
(days)	Larvae	Pupae	Larvae	Pupae
0	90.7	91.5	94.0	90.7
4	42.2	45.3	1.3	44.0
6	9.3	22.8	0.0	16.0
8	2.7	20.0	0.0	8.0
10	2.7	5.3	0.0	2.7
12	0.0	2.7	0.0	0.0

Low temperature treatments against diapausing Indianmeal moth larvae require sub-freezing treatment temperatures.

Mortality of diapausing IMM larvae at -10°C

Exposure (hours)	Lab	Wild-type
24	32.2	22.3
48	41.6	34.9
120	63.2	71.7
168	78.5	82.6
240	99.0	92.6
360	100.0	100.0

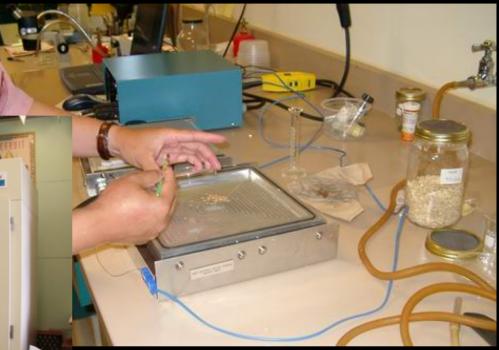
Mortality of diapausing IMM larvae at -15°C

Exposure (hours)	Lab	Wild-type
6	47.5	50.6
24	99.5	94.9
36	99.2	97.0
48	100.0	97.5
60	100.0	99.6
72	100.0	100.0

Mortality of diapausing IMM larvae at -20°C

Exposure (hours)	Lab	Wild-type
3	50.9	31.4
6	94.2	86.6
9	100.0	99.7
12	100.0	99.9
15	99.7	100.0
18	100.0	100.0

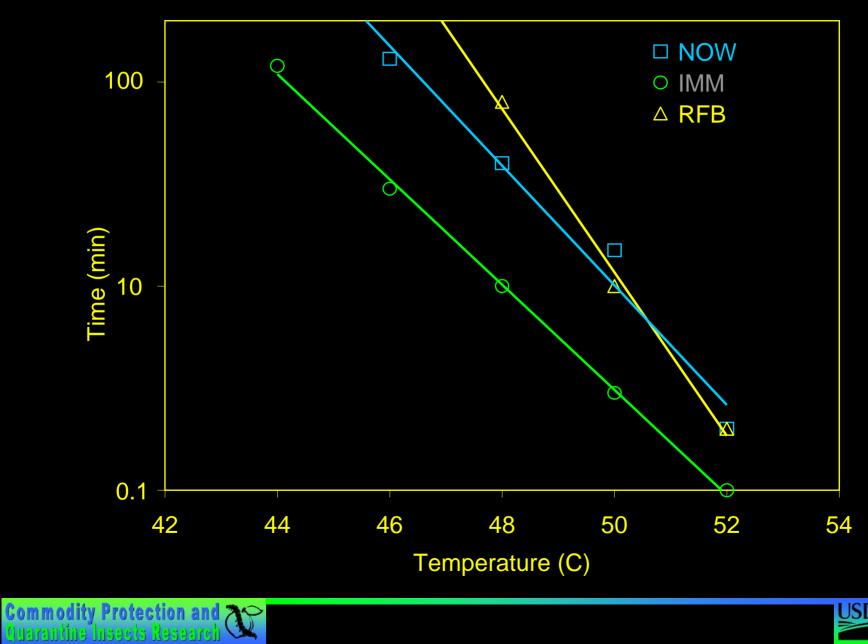
High temperature radio frequency treatments


- Radio frequency heating provides very rapid heating throughout the product
- Product quality is not effected when subjected to high temperatures for short periods
- Treatment times as short as 10 minutes are possible

Thermal death points were first determined in heat block studies...

...treatments based on this work were tested in radio frequency ovens.

Relative heat tolerance of red flour beetle stages


Stage	Treatment		
e te ge	48°C / 20 min	50°C / 8 min	52°C / 0.5 min
Eggs	100.0 a	100.0 a	99.2 a
Early Larvae	96.2 ab	99.5 a	92.3 a
Late Larvae	24.7 c	74.9 b	27.5 b
Pupae	72.9 b	99.4 a	46.1 b
Adults	78.6 b	97.0 a	52.3 b

Averages within columns followed by different numbers are significantly different (LSD means separation)

Comparison of TDT curves for target species

Comparison of lethal times (minutes) for target species

Temp	Target Species			
(°C)	RFB	NOW	IMM	
		LT_{95}		
48	64.5	40.9	7.6	
50	7.9	13.5	2.2	
52	1.5	4.3	0.9	
		LT_{99}		
48	75.4	46.8	8.8	
50	9.5	15.3	2.5	
52	1.7	5.0	1.0	

Fifth instar navel orangeworm was used for tests in radio frequency ovens.

Mortality of fifth-instar NOW in walnuts after radio frequency (27 MHz) treatment to 55°C

Treatments	# Alive	# Dead	% Mortality
Control	180	0	0
RF+5min hot air	0	180	100
RF+10min hot air	0	180	100
RF/hot air+10min hot air	0	180	100

Treatments consisted of 60 test insects replicated 3 times

Other results from radio frequency studies

Walnut quality is not harmed

 May need higher temperatures to disinfest almonds

Addition of hot air becomes more critical with products like almonds

Questions?

