

Heat Treatment of Empty Steel Bins

Mark Casada, Dennis Tilley, & Frank Arthur USDA-ARS Grain Marketing and Production Research Center Manhattan, Kans.

Outline

- * Introduction & Motivation for Project
- * Objective
- * Equipment and Process Used
- * Temperatures and Insect Mortality Results
- * Conclusions
- * Future Plans

Introduction & Motivation

- * Residual chemicals currently recommended for pre-binning sanitation
- * Heat treatments have been successfully applied in processing facilities to control insects
- * Bins with full drying floor are particularly difficult for sanitation
- * GMPRC Pilot Plant had a bin needing sanitation

Introduction & Motivation

Initial Treatment & Overview

- *4,800 bu metal drying bin (perforated floor).
- *Large variable speed drying fan ("choked" down).
- *1 hp aeration fan for circulation in the bin.
- *Perforated floor was covered with tarp.
- *Introduced live insects in arenas to check mortality.

Larvae Exiting Bin 18 kW Heating Element 40 Hour Treatment

Trap Counts 18 kW Heating Element 40 Hour Treatment

Project Objectives

- * Develop a practical method to obtain a uniform heat distribution of 120°F within the bin.
- *Evaluate insect mortality rates.
- * Develop an economic model describing the most cost effective method of using heat to sanitize steel grain bins prior to filling.

Heating Equipment

Forc ed Air P ropane He aters 65,000 - 85,000 - 100,000 B T U

Forced Air Electric Heaters

Three species added to arenas'

Rice weevil (Sitophilus oryzae)

Red flour beetleLesser grain borer(Tribolium castaneum)(Rhyzopertha dominica)

Arena

- * 3 species of insects.
- * HOBO Temperature Instrument.
- * 1 tsp of cracked wheat

Arena Locations

- * 5 Control located outside of bin..
- * 5 Below aeration
- * 5 Above Aeration floor
- * 7 One foot above
- * 3 Upper Portions of bin

Temperature and Time Required to Kill

* Evans, D. E. 1981. The influence of some biological and physical factors on the heat tolerance relationships for *R. dominica* and *S. oryzae*. J. Stored Prod. Res. 17:656-72.

18 kW Heating Element

Summary of Kill Results:

Below Drying Floor on the East Side

18 kW Heating Element

Summary of Kill Results:

Below Drying Floor on the North Side

18 kW Heating Element

Summary of Kill Results:

Below Drying Floor on the West Side

Conclusions

- * Sanitizing a steel grain bin using heat is a viable option.
- * Heat can penetrate trash under drying floor.
- * Distributing heat uniformly to all parts of the concrete floor can be difficult with small heaters.

Future Plans

- *Repeat treatments with propane heater and forced air electric heat in the bin.
- *Heat treatment of other bins on small concrete slab.
- *Controlled time motion study of sanitizing a bin by removing flooring and manually cleaning.
- *Development of economic model.