

EMPTY BIN TREATMENTS

Mimoun Abaraw

•

•••

Heat Loss Calculations

Required BTU

- Surface Area
- Wall Composition
- **o** Delta Temperature
- Natural Infiltration
 - Ventilation Load

Rectangular Shape

- Walls
 - -2 x Height x Width (Width)
 - -2 x Height x Length (Length)
- Roof
 - Width x Length
- Floor
 - Width x Length

- Cylinder - R x H x 2 x π
- Top Plate
 - $-\mathbf{R}^2 \ge \pi$
- Bottom Plate $-R^2 \propto \pi$

Temperature Difference

ΔT: The difference in the outside design temperature (**OT**) and the inside design temperature (**IT**).

Natural Infiltration

Air is drawn into a facility because of the pressure imbalance caused by the imbalance in temperature

Ventilation Load

The amount of CFH, or Air Flow, needed to heat-up the area to the target temperature and displace or control the natural infiltration in an hours' time.

Other Factors to Consider

Air Changes

- The amount of fresh air that circulates within a facility
 - Ideal air changes are 4 6 per hour

Ductwork Length

- Ductwork creates static pressure in distributing the heat
 - This draws on the CFM or Air Flow of the heat
 - Negatively affects required CFM and heat discharge

Using Top Opening

Use ductwork with holes inside the bin for better heat distribution

Using Bottom Opening

No need for ductwork inside the bin

Any Questions?