Update On The Development Of Sulfuryl Fluoride As An Alternative To Methyl Bromide

Suresh Prabhakaran, Ph.D. Dow AgroSciences LLC, Indianapolis, IN

Sulfuryl Fluoride (SO_2F_2)

- Early 1950's Research initiated by Dow to develop an alternative structural fumigant without the mercaptan odors associated with methyl bromide
- 1955 First field tests with sulfuryl fluoride for control of DWT
- **1959** Patent received for fumigation with sulfuryl fluoride (#2,875,127)
- 1961 First marketed in US under trade name Vikane* gas fumigant
- 1974 Sulfuryl Fluoride production initiated at Dow Chemical facility at Pittsburgh, CA.

Sulfuryl Fluoride (SO_2F_2)

- Currently sold under global trade name Vikane* gas fumigant
- Primary use: Structural Fumigation to control Drywood Termites
- Secondary uses: Railcars, Shipping Containers, Artifacts, Beetles
- Currently registered in:
 - Ster USA
 - 🗺 Caribbean
 - Sweden
 - **Second Second S**

More Similarities Between SF & MeBr than Differences

Both are excellent fumigants that:

- have wide pest spectrums
- are non-flammable and odorless
- have similar vapor density and molecular weights
- are non-corrosive in vapor phase
- utilize CT dosage relationship

Dosage = Concentration X Time

Key Differences: Physical/ChemicalPropertiesFactorSFMeBr

CH₃Br Formula SO_2F_2 Inorganic Organic Nature **B.P.** (°C) -55.2 3.6 **V.P.** (**kPa**) 1700 190 **Solubility** Water (ppm) 750 17,500 **Solubility Organics**(**ppm**) High Low

Key Differences: Fumigant Properties

Odor Potential

None

Slow Sulfurous

Key Differences: Biological Activity

Relative	Insect	Control
Stage	SF	MeBr
Adult	X	X
Pupal	X	\mathbf{X}^*
Larval	X	X
Egg	\mathbf{X}^{*}	X
* May Require I	Higher Dosag	ges

Key Differences: Packaging and Use

Factor	<u>SF</u>	MeBr
• Cylinder wt	90 kg	20-90 kg
• Pressure(kPa)	2078	172
 Heat Exchange 	ger No*	Depends
• Vol. Contrl.	Hose len/dia.	None
 Shooting 	Outside	Depends

Shooting fans necessary as internal heat exchanger and for improved fumigant equilibrium

Biology efforts to define effective dosages

- Laboratory efficacy trails (1995-2001)
- Target six key SPIP (IMM, MFM, CFB, RFB, WB, STGB)
 - CSL in UK
 - **DFA in CA**
 - **BBA in Germany**
 - USDA-ARS in CA
- Validate CT concept for SPIP
- Field validation of laboratory results
 - Germany
 - UK
 - US
- Translation of data into label rates based on targeted level of control
- Development of ProFume* Fumiguide Calculator

*Trademark of Dow AgroSciences LLC ProFume is not available for sale. EPA registration pending.

Development of "Best Practices" to optimize efficient use of sulfuryl fluoride

- Improved structure sealing techniques
- Optimizing gas retention
- Increased HLT
- Shorter time to reach equilibrium
- Maintenance of fumigant equilibrium
- Improved monitoring techniques

Goal: Use of less fumigant to reach desired level of insect control

- Minimize downtime
- Ensure safety
- Avoid damage

*Trademark of Dow AgroSciences LLC ProFume is not available for sale. EPA registration pending.

Taste and Quality Effects

- Validate that fumigation of DF & TN and Cereal Grains does not affect taste and quality
 - Completed two DF & TN trails
 - 9 commodities
 - In cooperation with DFA and USDA-ARS
 - Coordinating taste and quality tests on wheat, rice and corn with:
 - Kansas State University
 - HGCA / CSL
 - Fumigating kernels, processed products (flour) and finished products

Population Modeling

- Better understanding of economic thresholds and action levels
- Population rebound rates
- Potential for development of resistance
- Determination of economical dosages
- Help determine success of pervious fumigations
- Predict when future fumigations will be required

Residue Research

- **DF & TN**
 - Commodity Fumigation / Analysis Completed 1999
- Cereal Grains (Wheat, Rice, Corn)
 - Fumigation of grain and process functions currently underway
 - Residue analysis/risk assessment

Regulatory Timeline

- * 2001
 - Dried Fruit and Tree Nut EUP (Walnuts, Raisins)
- * 2002
 - Section 3 Registration Approval DF&TN
 - Product Launch DF&TN
- * 2003
 - Section 3 Registration Approval Cereal Grains (US)
 - Product Launch Cereal Grains (US)
- * 2004
 - Product Launch Cereal Grains (Europe)
 - Section 3 Approval Food Processing (US)
 - Product Launch Food Processing (US)

*Trademark of Dow AgroSciences LLC ProFume is not available for sale. EPA registration pending.

Product Stewardship

It is a Dow AgroSciences expectation that an effective Product Stewardship Program will be a primary requirement in any area where sulfuryl fluoride business currently exists or where new uses are being developed.

Conclusions

- Dow AgroSciences is committed to supporting sulfuryl fluoride in the existing Vikane* markets as well as new use patterns
- Sulfuryl fluoride (ProFume*) will be a viable alternative for methyl bromide in many commodity fumigation markets
- Dow AgroSciences is demonstrating confidence and commitment in ProFume* through our investments in product development
- Developing technical foundation for long term use of sulfuryl fluoride
- Cooperating with researchers, fumigators and the food industry to development practical sulfuryl fluoride fumigation options

Thank You

