IPM for Commercial Grain Storage: Industry Perspective

Paul W. Flinn USDA, ARS, Grain Marketing & Production Research Center Manhattan, Kansas

With a great deal of help from Carl Reed Dept. of Grain Science, Kansas State University

Areawide IPM for Stored Grain

David Hagstrum, Paul Flinn, Frank Arthur, Jim Throne, Mike Mullen USDA, ARS, GMPRC Carl Reed Kansas State University, Dept. of Grain Science & Industry Tom Phillips, Gerrit Cuperus, Brian Adams and Ron Noyes Oklahoma State University

Objective: to determine whether insect pest management can be done more effectively and at a lower cost when insects are managed throughout a network of elevators.

How the Areawide IPM Concept Applies to Stored Grain

Areawide IPM is particularly important for stored wheat because insects are moved through the marketing system along with the grain. If insects are not controlled at one location, they can be spread to many other locations, which increases the cost of pest management.

Areawide IPM Project for Stored Grain

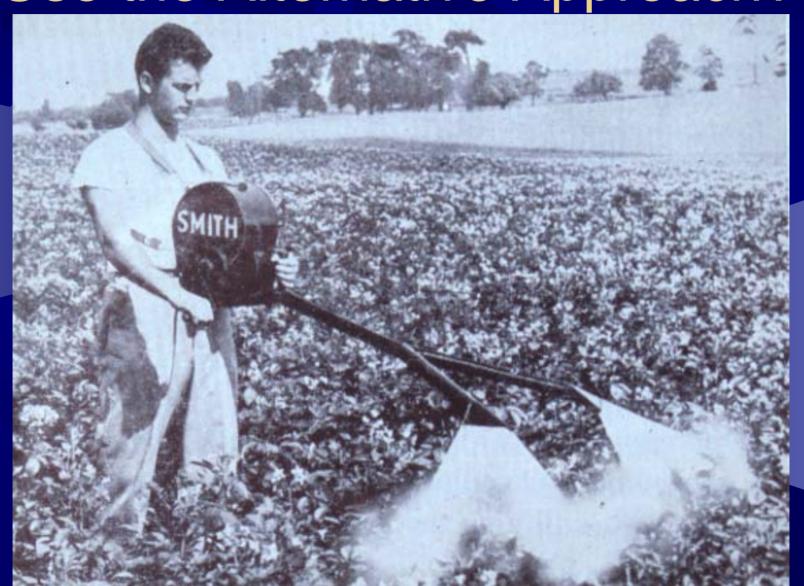
- We have two years of field data from 16 elevators in Kansas and Oklahoma.
- Goal: reduced need to use insecticides through insect sampling and risk analysis software.
- The cost effectiveness of this program will be evaluated during the next 2-years.

Current Insect Management in Grain Elevators

- Only one main insecticide: phosphine
- Repeated fumigations
- Calendar-based fumigations

Problems with Current Insect Management Programs

- Poorly-targeted applications
- Kills natural enemies
- Insecticide substituted for preventative practices


Differences Between Current and Alternative Approach to Insect Management in Stored Grain

	Current Approach	Alternative Approach		
	Preventative and/or	Accurate information on		
tool	periodic fumigation	insect densities		
Decision-making	Based on personal	Risk analysis software		
	experience	recommends treatment		
		based on sampling and		
		predicted insect density		
Grain Cooling	Variable, usually done	Automatic controllers		
	too late to control	allow early cooling to		
	insects	suppress insect growth		
Sanitation		Targeted to be cost-		
	Variable	effective		
Fumigation	Based on schedule or	Done only when insect		
	inadequate data	density exceeds		
		threshold		

Anticipated Results of Alternative Approach

- Reduction in insect damaged grain, insecticide use, and management costs.
- Reduction in worker exposure to insecticides and decreased insecticide resistance in insects.
- Improvements in grain management will reduce insecticide residues on grain and increase U.S. competitiveness in the world market.

What Equipment is Needed to Use the Alternative Approach?



Vacuum Probe in Action

Inclined Sieve

- The sieve collapses so that it can be carried in the manlift.
- The inclined sieve allows us to rapidly separate the insects from 1 gallon samples of grain so that we can leave the grain at the elevator and carry away only the insects.

Area-Wide IPM Decision Support Database

GMPRC, Agricultural Research Service -Kansas State University - Oklahoma State University

Automatic Aeration Grain Quality

Grain Shipping and Receiving

Insect Sampling

Internal Movement

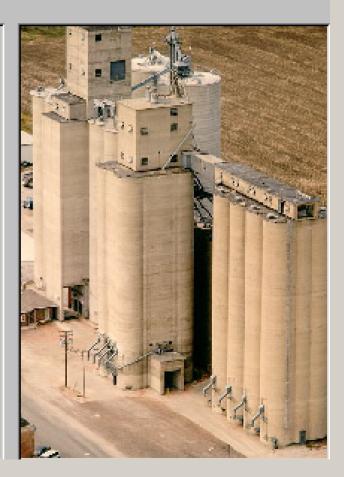
Pesticides

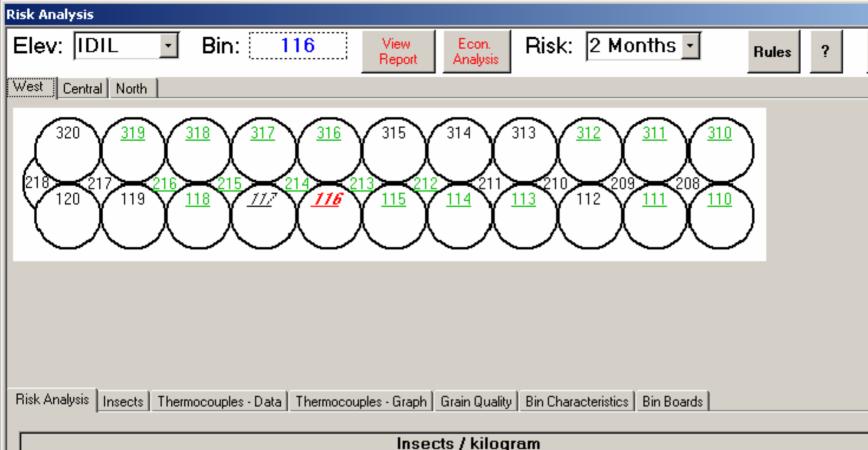
Sanitation

Thermocouple

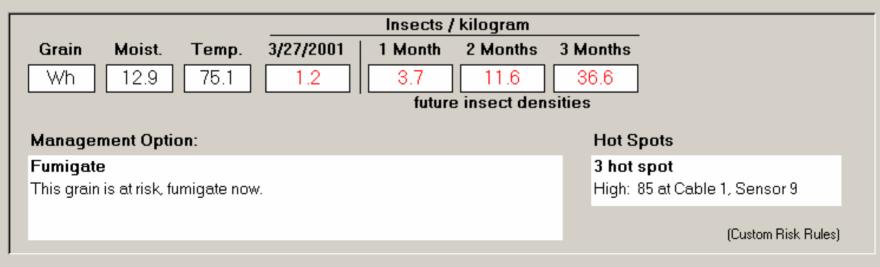
Bin Boards

HOBOs

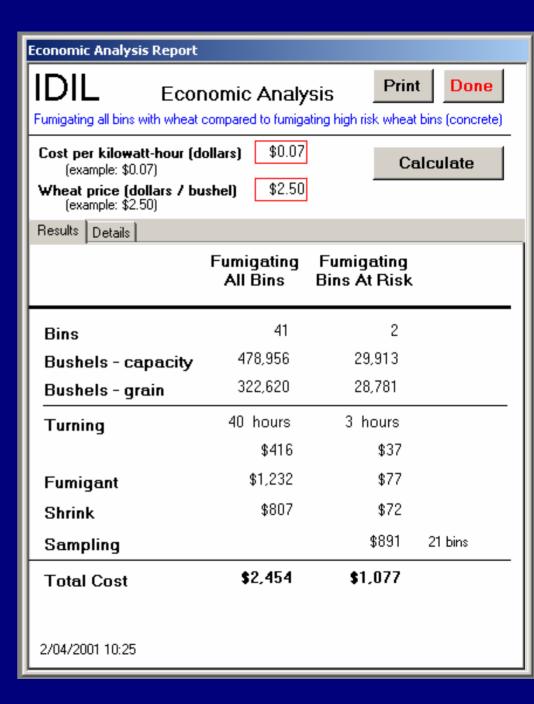

Characterize Elevators


Characterize Bins

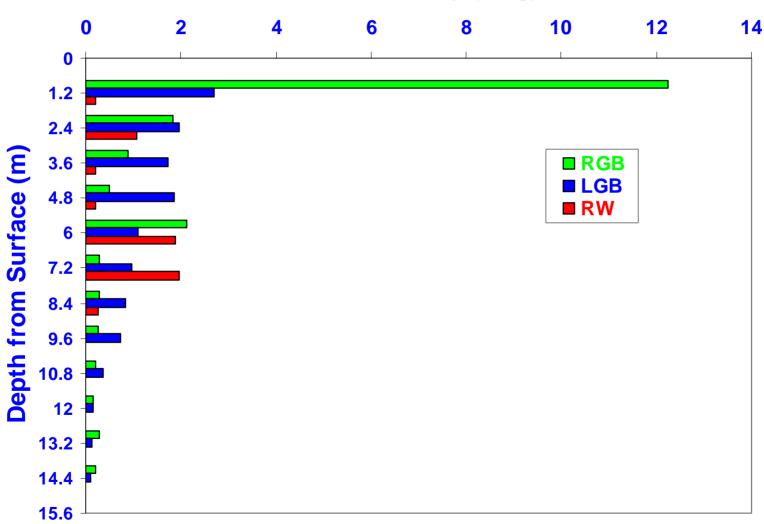
Characterize Aeration


> Risk Analysis

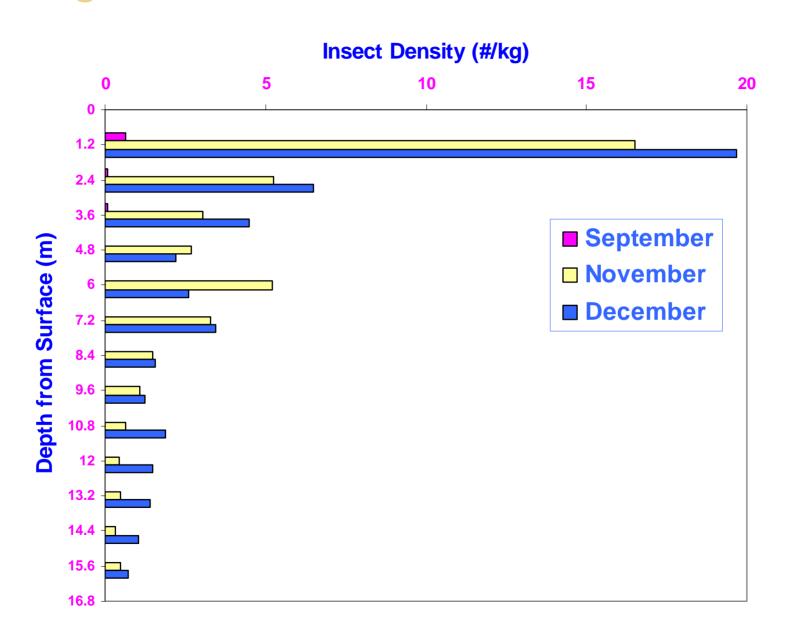
Exit Database


Print Page

Risk Report														
	DIL							Insed	ts/kg		_	Print	Done	
(4	4 at Risk, 36 Safe, 38 w/o Insect data, 5 w/ hot spots)						Future Insects / kq			Analysis time: 10 sec.				
	Bin	Risk	Date	Gr.	Moist.	Temp.	Current	1 Month	2 Months	3 Months	Management Option	on Hot	Spots	
III	1	Safe	3/26/2001	Со	12.5	75.0	0.0	0.0	0.0	0.0	No Action Required	0 Hot	spot	
	2	Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0	0.0	No Action Required	0 Hot		
╙	3		3/26/2001		12.5	75.0	0.0	0.0	0.0		No Action Required	0 Hot	spot	
╙		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0	0.0	No Action Required	0 Hot	spot	
╙		Safe	3/26/2001	Mi	12.5	75.0	0.0	0.0	0.0	0.0	No Action Required		O Hot spot	
Щ		Safe	3/27/2001		12.9	54.6	0.0	0.0	0.0		No Action Required	0 Hot	O Hot spot	
Щ		Safe	3/27/2001		12.3	48.4	0.0	0.0	0.0		No Action Required	0 Hot		
Щ		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration	0 Hot		
╙		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration	0 Hot		
╙		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration		O Hot spot	
╙		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration		0 Hot spot	
Щ		Safe	3/27/2001		13.0	51.6	0.0	0.0	0.0		No Action Required	0 Hot		
Щ		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration	0 Hot	0 Hot spot	
╙		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		Cool w/ Aeration		O Hot spot	
╙		Risk	3/27/2001		12.9	75.1	1.2	3.7	11.6		Fumigate		3 hot spot	
Щ	117		3/26/2001		0.0	0.0	0.0	0.0	0.0		No Insect Data	2 hot		
Щ		Safe	3/27/2001		12.5	52.0	0.0	0.0	0.0		No Action Required		O Hot spot	
Щ		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		No Action Required		O Hot spot	
Щ		Safe	3/26/2001		12.5	75.0	0.0	0.0	0.0		No Action Required	0 Hot		
Щ		Safe	3/27/2001		13.5	46.9	0.4	0.4	0.4		No Action Required		0 Hot spot	
Щ		Safe	3/27/2001		12.8	43.5	0.0	0.0	0.0		No Action Required	0 Hot		
Щ		Safe	3/27/2001		13.4	45.4	0.0	0.0	0.0		No Action Required		O Hot spot	
Ш		Safe	3/27/2001		11.5	48.2	0.0	0.0	0.0		No Action Required	0 Hot		
		Safe	3/27/2001		13.0	50.1	0.0	0.0	0.0		No Action Required	0 Hot		
		Safe	3/27/2001		13.5	60.9	0.0	0.0	0.0		No Action Required	0 Hot		
		Safe	3/27/2001		12.9	58.7	0.0	0.0	0.0		No Action Required	0 Hot		
		Risk	3/26/2001		11.6	59.2	25.0	25.0	25.0		No Action Required	2 hot		
	302	Risk	3/27/2001	₩h	13.3	71.4	54.2	121.7	273.2	613.3	Fumigate	2 hot	spot	▼


Economic Analysis provides a comparison of the costs of:

- 1) Turning and fumigating all bins with grain at an elevator.
- Sampling all bins with grain, and fumigating only those bins that are at high risk.



Vertical Distribution of 3 Insect Species in Concrete Silos (November)

Changes in Vertical Distribution of Insects

Average Insect Density in Grain Being Fumigated Compared With Grain not Being Fumigated

	Fumigate	d Grain	Not-Fumigated Grain			
Month	Density (#/kg)	# Samples	Density (#/kg)	# Samples		
July	0.03	263	0.01	361		
August			-			
September	0.66	285	0.52	1,037		
October	1.07	323	1.18	1,210		

Grain Industry Perspective: Revisited

We can use both current and future information provided by the study to improve efficiency in managing insect problems in grain elevators.

An Effective IPM Program Results In Higher Profits

- Marketing: higher margins.
- Fumigation practices: cost savings.
- Aeration practices: cost savings.
- Peace of mind: you know what condition your grain is in.

Marketing - Buyers Demand Quality

- Mills have a max. limit of 5 IDK or less.
- Buyers shy away from IDK wheat.
 - Increased cost to treat the grain.
 - Lowers quality standards of products.
 - lower product yields fragments in flour, etc.

Insects or IDK Discovered At Destination

- Rejected shipment
- Treat Shipment at destination
 - Relay cost back to origin
 - Charges can be substantial
- Damage your reputation as a quality shipper

IPM Principles: One Last Time

- Prevention.
 - Sanitation: helps slow down insect immigration into new grain.
 - Aeration: slows down population growth (max at 90F,1/2 at 75F, stops at 65 F).
- Sampling: fumigate only when insect densities exceed a threshold.
 - Additional benefit: high insect populations are prevented, which decreases insect migration into other grain bins.