Integrating Heat with Other Pest Management Tactics

Paul Fields

Cereal Research Centre, Winnipeg pfields@agr.gc.ca www.agr.gc.ca/science/winnipeg/cgs_e.htm

Temperature Effects on Insects

Heat with Other Control Methods

- Heat and DE
- Heat, phosphine and CO₂
- Effect on contact insecticides

Diatomaceous Earth (DE)

- Geological deposit of diatoms
- Fine dust, dusty to work with
- Efficacy varies with geological source
- Silicone dioxide
- Feed additive

Diatomaceous Earth

SEM of Insect Cuticles After Exposure to DE

 LD_{50}

52 ppm

C. ferrugineus, 1 day, 507x

S. orzyae, 6 days, 1015x

338 ppm

R. dominica, 6 days, 630x

T. castaneum, 6 days, 507x

 LD_{50}

195 ppm

298 ppm

Effect of Moisture on DE Efficacy

Efficacy of Different DEs

Can heat be made more effective with DE?

Application of DE

Bioassay on Mill Floor

Rings ready for insects

Confused flour beetle

Temperature (°C) at 50% Death of Confused Flour Beetle

Mill	Temperature (°C)	
	Heat Alone	Heat and DE
Quaker	46	38-40
KSU	48 +	39-43

Survival (%) Of Confused Flour Beetle At End Of Heat Treatment

Mill -	Survival (%)	
	Heat Alone	Heat and DE
Quaker	15	0
KSU	55	0

Heat and DE

- Lowers temperature needed to control confused flour beetle by 5°C / 10°F
- Could be useful in difficult to heat areas

Needs to be tested on larger scale

Heat with Other Control Methods

- Heat and DE
- Heat, phosphine and CO₂
- Effect on contact insecticides

Phosphine Fumigation and Temperature

Temperature	Minimum exposure times (days) ^a	
	Tablets	Pellets
under 5°C / 41°F	No fumigation	No fumigation
5-10°C / 41-50°F	10	8
11-15°C / 52-59°F	5	4
16-25°C / 61-77°F	4	3
over 25°C / 77°F	3	3

a. 60% R.H., 12-13% mc for wheat

Corrosion

- Major problem when fumigating mills with PH₃
- Doses needed to quickly control insects also cause corrosion
- Remove or isolate sensitive equipment

Heat, Phosphine and CO₂

- Heat 30-38°C / 86-100°F
- Phosphine 50 to 100 ppm
- CO₂ 5-7%
- Duration 24-36 h
- Designed to minimize time and corrosion
- Over 50 fumigations in USA

Heat, Phosphine and CO₂

Contact:

David Mueller

Fumigation Service and Supply Inc.

Telephone: 317-896-9300

Email: insectsltd@aol.com

Heat with Other Control Methods

- Heat and DE
- Heat, phosphine and CO₂
- Effect on contact insecticides

Contact Insecticides

- Residues decrease faster at higher temperatures
- Organophosphates (Reldan, malathion) more effective at higher temperatures
- Pyrethrin and pyrethroids (cyfluthrin) more effective at cool temperatures

Cyfluthrin efficacy

- Adult *T. castaneum* exposed for 0.5, 1, & 2 h on concrete treated with 20 mg
- Residual bioassays done every 2 weeks
- Greater efficacy at 20 than at 25-35°C

T. castaneum adults exposed to cyfluthrin WP at 20 to 35°C after 14 days

Arthur FH. 1999. JEE 92: 695-699.

Heat Treatments: Field Trials Frank Arthur

- Concrete discs treated with pyrethroid cyfluthrin exposed in an actual field trial
- Companion set placed in unheated office
- Discs after treatment, adult *T. castaneum* exposed for different intervals

T. castaneum exposed on concrete treated with 2 mg [AI] cyfluthrin/m²

Conclusions

- No degradation or loss of activity because of heating
- Heat appeared to increase activity of cyfluthrin WP
- Results with this test at 10% of maximum label rate comparable to lab tests with full rate

