Evaluating Heat Treatment Effectiveness

Bh. Subramanyam (Subi) Department of Grain Science and Industry Kansas State University Manhattan, KS 66506 Tel: 785-532-4092 Fax: 785-532-7010 E-mail: bhs@wheat.ksu.edu

May 15, 2004 Heat Treatment Workshop

Insect Species Vary in Their Susceptibility to Heat

Red flour beetle
Newly hatched larvae are heat tolerant

Confused flour beetleOld larvae are heat tolerant

Effect of Humidity on Mortality of Red Flour Beetle Adults (KSU Pilot Flour Mill, Steam Heat Treatment, March 17-20, 2000)

Exposure time (hours)	Temp. range (°C)	Hours to reach 50°C	Hours above 50°C	% RH	% Mortality
<mark>24</mark>	22,1-42,0	0,0	0.0	71,7	0,0
	22.1-42.0	0,0	0.0	58.6	0,0
	22.1-41.5	0.0	0.0	50,6	0.0
No Glycerol	22.1-41.5	0.0	0.0	30,7	1.7
G. Chamber	27,5-28,3	0,0	0.0	36,2	1.7
47	22.1-51.8	43.0	4.0	70.5	100.0
	22.1-51.8	43 .0	4.0	57.5	100.0
	22.1-50.7	44 .5	2.5	49.3	100.0
No Glycerol	22.1-51.2	44.0	3.0	26.2	100.0
G. Chamber	27.5-28.7	0.0	0.0	37.1	0.0

Effect of Humidity on Mortality of Red Flour Beetle Adults (KSU Pilot Flour Mill, Steam Heat Treatment, March 17-20, 2000)

Temperature = 50.1-52.4°C; Growth chamber = 27.5°C

% RH, Range	20 Minutes	30 Minutes	50 Minutes
53.6-63.1	0.0	29.0 b	100.0
46.1-49.3	0.0	93.8 a	100.0
31.6-48.1	0.0	97.5 a	100.0
20.4-20.5	0.0	95.0 a	100.0
No Glycerol			
32.4-38.1	0.0	0.0 c	0.0
Chamber			

For each time and treatment combination, n = 3.

Mortality of Red Flour Beetles Insulated by Whole Wheat Kernels and Flour (KSU Pilot Flour Mill, Steam Heat Treatment, November 23-28, 1999)

Commodity	Location	Temp. range (°C)	% RH, range	% Mortality
Wheat	Тор, 4"	21.7 - 40.1	32.2 - 81.4	9.5
	Middle, 14"	22.9 - 40.1	26.2 - 79.5	40.0
	Bottom, 23"	22.9 - 39.7	26.1 - 80.2	25.0
Flour	Тор, 6"	19.4 - 38.8	27.9 - 76.4	4.8
	Middle, 14"	19.4 - 38.9	27.6 - 75.5	0.0
	Bottom, 22"	19.8 - 37.9	28.3 - 70.6	0.0

Apply a residual pesticide such as Tempo or diatomaceous earth

Why is sanitation alone not enough?

- Stored-product insects live for several months
- They can survive on very little food
- 50% of the facility is inaccessible for cleaning
- Insects can seek out cool spots

Remove products and fumigate to reduce risk of reinfestation

Verify that the fumigation was successful

Should equipment be opened or closed?

Open, clean, and then close

Monitoring Insects

- Before heat treatment, several weeks
- After heat treatment, several weeks
- Identify species of importance
- Degree of suppression
- Duration of suppression
- Use traps or take samples of products before and after heat treatment
- Results vary depending on whether traps or products were used

Monitoring Insects: Traps for Beetles

Pherocon II traps for moths

A=Wild bird food B=Small animal food C=Cat and dog food

Changes in mean number of insects captured in traps

Number of adults

July 21-28, 1999

August 18-27, 1999

November 9-18, 1999

Before heat trt 1 After heat trt 1 Before heat trt 2

KSU Pilot Flour Mill, mill floor - 1

Predictive Models

- Need to generate data at constant temperatures in the laboratory
- Uses temperature to determine mortality for any given temperaturetime history

Nonlinear Relationship Between Survival of Old Larvae and Exposure Time at 46-60°C

Nonlinear Relationship Between Mean D(7) and Temperature

The thermal death kinetic model was derived from the following equation

$$\log_{10}\left(\frac{N_{t-dt}}{N_t}\right) = \frac{dt}{D(T_t)}$$

where N_{t-dt} is the survival at *t-dt* time interval, N_t is survival at time *t*

$$N_t = \frac{N_0}{\sum_{10}^t \frac{\Delta t}{D(T_t)}}$$

where N_t is number of larvae at time t, N_o is the original number of insects, Δt is the incremental exposure time (0.5-min), D is the mean instantaneous D-value as a function of temperature (T), and T_t is time-dependent temperature profile

Heating rate (1.09°C/h)

Table 3. Model Performance

Heating rate	Absolute deviation (%) in terms of		
(°C/hr)	Larval survival (No. larvae/100 larvae)	Time to equal larval survival (No. min/100 min)	
1.09	6.5	4.16	
1.16	5.5	3.49	
1.19	6.6	3.85	
1.22	4.5	2.91	
1.76	6.0	3.67	
2.12	4.8	4.77	
2.44	4.9	2.98	
5.31	4.8	5.11	
12.02	9.2	16.03	

Utility of the model: Predict mortality at different locations during a heat treatment and alter heat treatment for effective insect kill

Conclusions

- Heat treatments are part art, part science
- Use heat tolerant insects of a species to measure effectiveness
- Monitor insects before and after heat treatment
- Use predictive models
- A lot of additional research data are needed!