


#### Quaker Oats Cedar Rapids

# Heat Treatments: Past, Present and Future

#### KSU Heat Treatment Workshop 2009

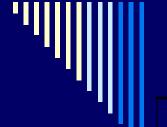


#### Summary

Heat Treatment / Remediation

- Evolution Long History
- Current Challenges
- Future State
- □ Flood of '08
  - The event and recovery Heats
  - Challenges / Learnings

#### **QO** Cedar Rapids Heat History


- Cedar began use of heat in the mid-1960s
  - Used everything else prior (methyl, malathion, etc.)
  - Lots of makes/sizes of heaters over time

Systems run off of steam

- Readily available from Alliant energy
- Simple technology / milling and extrusion
- Temperature / time requirements
  - "Art vs. Science"
  - Lots of history in heating







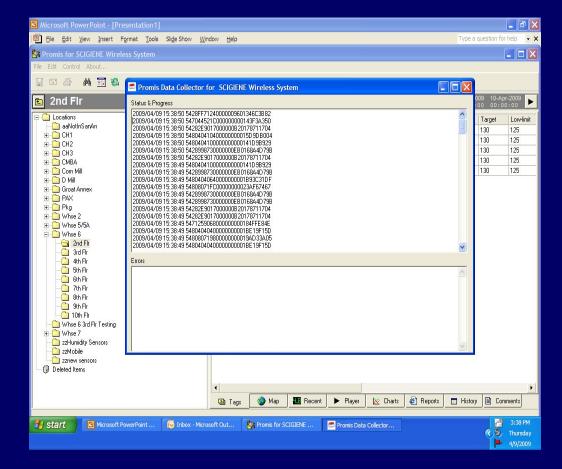
#### Temperature – Time Requirements

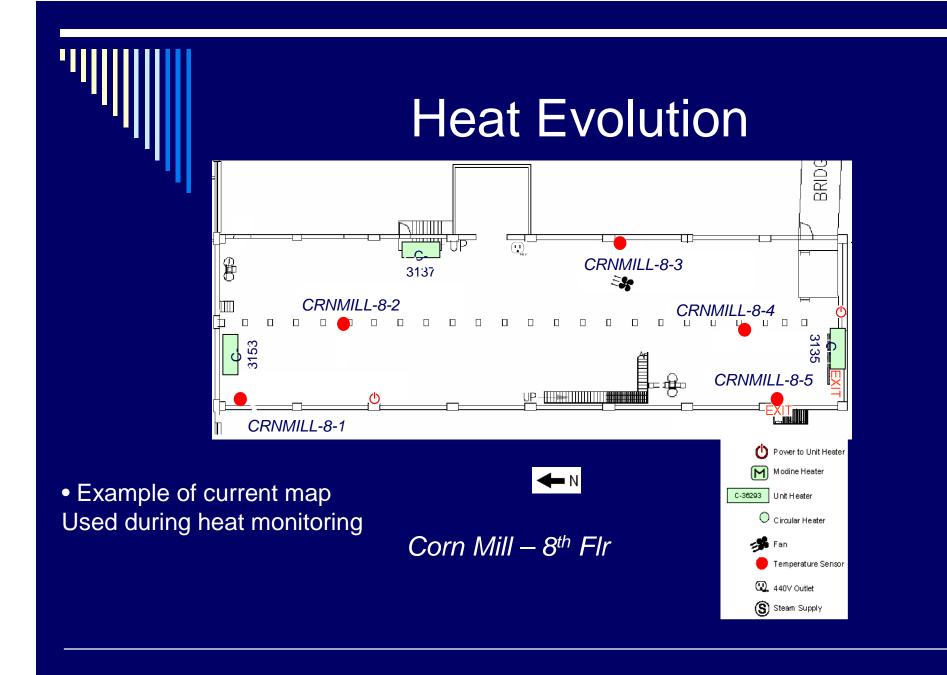
#### The Response of stored-product insects to temperature\*

| Zone       | Temp (°F) | Effect                                       |
|------------|-----------|----------------------------------------------|
| Lethal     | 122 - 140 | Death in minutes                             |
|            | 113 - 121 | Death in hours                               |
| Suboptimum | 96 - 112  | Development stops                            |
|            | 91 - 95   | Development slows                            |
| Optimum    | 77 - 94   | Maximum rate of development                  |
| Suboptimum | 55 - 76   | Development slows                            |
|            | 55 - 68   | Development stops                            |
| Lethal     | 41        | Death in days (unacclimated), movement stops |
|            | 14 - 23   | Death in weeks to months (acclimated)        |
|            | -13 - 5   | Death in minutes, insects freeze             |

\*Species, stage of development and moisture content of food will influence the response to temperature (Fields, P.G. (1992) The Control of Stored-Product Insects and Mites with Extreme Temperatures. *J. stored Prod. Res.* 28, 90)

#### Heat Evolution


- Staffing changes / monitoring electronically vs. manual
- Entire plant vs. selective areas
  "Big/Small" heats
- □ Several things prompted:
  - Costs labor at the time
  - Flexibility run adjacent areas
  - Improved monitoring for activity / spraying selected areas / other treatment options
  - IPM policy / development of trigger levels






#### Heat Evolution

- Monitoring methods Electronic
  - Safety considerations
  - Still need to "adjust" heat for effectiveness
  - Need to walk floor for observing upset conditions due to temp
  - Growing # of options out there (wireless/remote/Hobos/ etc.)
  - Manual Thermometers





#### Challenges

- Scheduling of heat "events" / finding downtime
  - Production / Engineering
- Areas not set-up for heat or adequate capabilities
  - Portables / Spot Treat
- **Electronic equipment** 
  - Start-up curve
- □ Maintenance support
  - Aging equipment
  - Support during heat start-up
- □ Safety of employees
  - Cold spots / adjustments
  - Catastrophes
- Monitoring equipment upgrades/changes
  - Changing technology





#### Heats - Future State

- □ Focused Improvement
  - Rounds staffing / develop "run rules"
  - Electronic controls vs. manual on heaters
  - Maintain effectiveness + eliminate wasted utilities
- □ Ability to do specific areas
  - Heaters / fans flexibility and portability
  - Move from heating entire floors to "spot" treatments
  - Add portable heater capabilities
- □ Time constraints Minimize line disruption
- Personal safety Minimize time spent in high temperatures









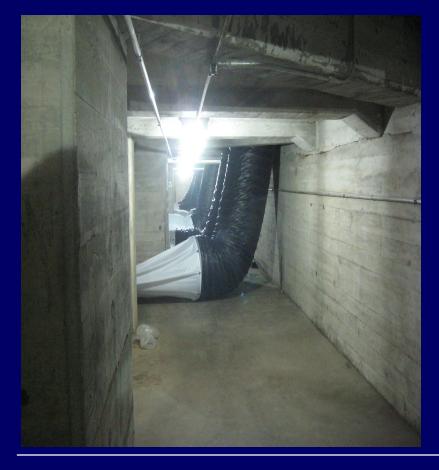




 Facility Heat capabilities "wiped" out in key 1<sup>st</sup>/Basement areas

- □ Warmest part of year
- Recovery process created other issues
- Moisture in basements created need to dry for dualpurposes






- Crisis event management
- Big "learning curve" in compressed time frame
- Controlled ramp up of heat to meet Quaker specifications / effective kill
- □ Large Audience!!

